
RuleCache: Accelerating Web Application
Firewalls by On-line Learning Traffic Patterns

Xiaoyi Chen1*, Qingni Shen1, Peng Cheng2, Yongqiang Xiong2, Zhonghai Wu1

1Peking University, Beijing, China
2Microsoft Research, Beijing, China

{xiaoyi.chen, qingnishen, wuzh}@pku.edu.cn, {pengc, yongqiang.xiong}@microsoft.com

Abstract—Web Application Firewall (WAF) is widely deployed
in cloud to protect web applications, whose performance becomes
one of the major bottlenecks for web services. In this paper,
we comprehensively analyze several root causes that downgrade
WAF’s efficiency. Inspired by that, we build a caching system
RuleCache to devise optimization strategies for improving
WAF’s performance. Among, Rule Ordering Cache is online
learning an optimal order of the ruleset for a better performance
of blocking. Rule Result Cache reuses rule results of targets,
saving large repetitive computations. Additionally, Rule Pre-
pruning Cache aims to cut extra overhead by processing the
static rules in the offline stage. Our evaluation demonstrates that
the prototype can improve the performance by up to 3.85x, 1.57x,
and 2.4x respectively with the above modules, and up to 5.5x in
total.

Index Terms—Web Application Firewall (WAF), rule set,
genetic algorithm, performance gain

I. INTRODUCTION

To meet the rapid growth need of Internet service, a
considerably increasing number of web applications are de-
ployed. Meanwhile, the incidents involving web security grow
excessively over the recent years. Especially since 2020, the
environment is just right for cyber criminals to strike during
the COVID-19 pandemic. Thus, the owners and maintainers
of the web applications are anxious to keep their services
safe from the malicious attacks. One of the most popular
countermeasures is the Web Application Firewall (WAF).

WAF is a firewall monitoring and filtering all the HTTP
traffic going in and out of the web applications. It could
effectively protect the web applications from attacks such as
cross-site scripting (XSS), SQL injection and denial-of-service
(DoS). The hardware WAFs, containing Netscaler MPX WAF
[1], Barracuda WAF [2], Imperva SecureSphere Appliances
[3], and F5 Big-IP ASM model 10200 [4], are efficient but
very expensive. The software solution is another trend to
implement WAF integrated with reverse proxy or web server
such as Microsoft Azure Application Gateway [5], Amazon
AWS WAF [6], and Cloudflare [7]. Compared with hardware
WAFs, it is a good option to balance between flexibility and
price especially with the rapid development of cloud.

Most of the WAF services are claiming to protect the
web applications from the most 10 critical web application
security risks presented by the Open Web Application Secu-
rity Project (OWASP) foundation. The OWASP Top 10 [8]

*The work was done during the author’s internship at Microsoft Research.

threats is a widely used standard to measure the coverage of
WAF’s protection. To target at the web application threats,
especially the OWASP TOP 10, some rule sets came out to
provide generic attack detection rules for WAF. As the most
recognized open-source rule set, Core Rule Set (CRS) [9] is
proposed as a pluggable set of rules for WAF which covers
a comprehensive attacks include the top 10 most critical web
application security risks.

However, by surveying the WAF solutions over the market,
we found that the poor efficiency of the WAFs hardly satisfy
the requirement of nowadays web applications. The main over-
head of WAF comes from rule processing based on two obser-
vations: (1) The target computation of rule-matching can be
non-trivial such as complex regular expressions (regex) [10],
and there are a huge number of repetitive computations in
target values among different requests, bringing redundant
overhead. Additionally, the overhead of rule-matching signifi-
cantly varies when processing different rules, because it largely
depends on the complexity of regex patterns and inputs. Intu-
itively, partially caching time-consuming and high-frequency
rule processing results can reduce the rule-matching latency
by saving repetitive target computations. (2) For rulesets that
do not impose a mandatory ordering on rule checking, the
naive practice of sequentially going through rules can result
in processing many unnecessary rules. Conceptually, if the
triggering rule can be prioritized at the top of the ruleset, the
system effectively achieves early-termination, thus minimizing
unnecessary rule checking.

These findings enlighten us to design an efficient rule cache
engine for future generation WAFs. Unlike the traditional web
cache, our cache aims to cache the targets of requests. We de-
sign our RuleCache to devise optimization strategies mainly
containing three modules (Figure 1). In the online engine, note
that online learning represents learning online traffic sliced by
the time window, i.e., the Analyzer, consisting of Rule Result
Cache and Rule Ordering Cache, learns online traffic in
one time window, and applies the results to the executor to
guide WAF in the next time window. The executor co-locates
together with the real-time WAF. Rule Result Cache caches
the intermediate results of matching targets with higher weight,
saving large repetitive computations brought by duplication.
Rule Ordering Cache is online learning an optimal order of
the ruleset for a better performance of blocking via genetic
algorithm. Additionally, we also present other incremental
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optimizations. That is, Rule Pre-pruning Cache will analyze
and pre-process the static rules during the offline stage.

To evaluate the benefits of RuleCache, we have integrated
it into a popular open-source rule engine ModSecurity [11]
and benchmark with its publicly available ruleset OWASP
CRS [12]. We monitor the real traffic to make up our bench-
mark, containing 861, 988 requests from Microsoft Azure
Application Gateway for six days from July 16, 2019 to July
21, 2019. Empirical results show that Rule Result Cache
can achieve 7%-57% performance gain varying workload and
cache percentage. The gain brought by Rule Ordering Cache
grows from 22% to 74% in different ratios of malicious traffic.
And Rule Pre-pruning Cache improves original performance
by 1.4x. Our prototype can improve WAF’s efficiency up to
5.5x in total. Therefore, it is an effective way to boost the
current performance of WAF by designing and implementing
one efficient rule cache engine.

Our contributions are as follows:
• We explore the root causes of WAF’s poor performance.

That is, the target computation of rule-matching can be
non-trivial and there are redundant repetitive computa-
tions in target values among different requests. Moreover,
the naive practice of sequentially going through rulesets
result in processing many unnecessary rules.

• We design an efficient rule caching engine RuleCache
with several modules. Rule Result Cache partially
caches the intermediate results of requests. Rule Or-
dering Cache deals with rule dependency, formulates
the overhead of rule location, and therefore acquires the
optimal solution.

• We implemented a prototype based on our design, im-
proving WAF’s performance by 1.57x, 3.85x respectively
and 5.5x in total.

The rest of this paper is organized as follows. Section II
provides background information of WAF. Section III explores
the root causes which downgrade WAF’s performance and
motivates two scenarios to build a high-efficiency rule cache
engine for WAF, proposing distinct challenges. Section IV
designs RuleCache guided by above insights and then Sec-
tion V implements an prototype of RuleCache. Section VI

evaluates its efficiency. Lastly, Section VIII concludes this
paper.

II. BACKGROUND

In this section, we briefly introduce Web Application Fire-
wall (WAF) and its general workflow of rule processing.

A. Web Application Firewall (WAF)

The last decade has seen an increasing popularity of web
applications as primary platforms for services delivery over
Internet [13]. Meanwhile, web security has become one of
the most challenging problems. In 2019, overall web attacks
on endpoints increased by 56 percent. More than 1.3 million
unique web attacks (e.g., SQL injection, cross site scripting
(XSS), cross-site request forgery (CSRF) [14]) were blocked
every day [15]. Motivated by the urgent need for web security,
research efforts have been devoted for mitigating attacks on
web applications [16]–[18]. One of prevalent mechanisms is
web application firewall (WAF), an appliance for monitoring
HTTP requests and responses between clients and back-end
servers [13], [19], [20].

There are two main WAF implementations over the mar-
ket. The hardware WAFs, such as F5 Big-IP ASM [4] and
Barracuda [2], are very expensive. Moreover, their annual
updating cycle is too long to cope with new threats. The
software solution is another way to implement WAF integrated
with reverse proxy or web server, which is a better option to
balance between flexibility and price. Besides, considering its
privilege in scalability and adaptability to new environment,
software WAF has already been a general trend with the
rapid development of cloud. Furthermore, there is a strategic
planning assumption that by year-end 2023, more than 70%
of public web applications will use software WAFs delivered
as cloud service [21].

B. Rule Processing

Rule-based software WAFs exploit a pluggable set of rules
to process HTTP traffic. Core Rule Set (CRS) is the most
recognized open-source rule set today [9], it covers a com-
prehensive attack detection include top 10 most critical web
application risks presented by Open Web Application Security
Project (OWASP) [8]. Thus, we take CRS for instance to
illustrate WAF’s workflow of rule processing.

1) Target: Compared with traditional network firewall,
WAF parses each request into multiple targets (VARIABLES)
and each target would be checked by different rules separately.
There are more than 20 targets defined in CRS, e.g., ARGS,
COOKIE, XML:/*, REQUEST_HEADERS, and etc..

2) Rule: The rule syntax of ModSecurity is as follows:

1 SecRule VARIABLES OPERATOR [ACTIONS]

SecRule is a header of each rule. OPERATOR is used
to define matching conditions for targets, e.g., @rx (regular
expression), @streq (same string) and @ipmatch (same
IP). ACTIONS are performed if the condition is matched.
ACTIONS can be classified into two: disruptive actions and



other actions. Disruptive actions include deny (packets re-
jected) and pass (packets allowed), while other actions (e.g.,
logging) have little effects on final decision.

When WAF processes a rule, it firstly extracts all targets
from HTTP requests and transforms them respectively. Then
it executes operators to check the match condition, and finally
performs actions.

3) Rule Set: CRS divides 759 rules in total by attack types
into 24 separated files called rule groups. They are loaded into
WAFs with a sequential order every time. Most rule groups are
independent with each other but rules have dependency within
a rule group. Many rulesets do not fix a mandatory ordering
of rules, and it dynamically re-orders rules according to how
likely they would match the given input.

III. OBSERVATIONS FOR EXISTING WAFS

In this section, we study root causes of WAF’s bad perfor-
mance and then motivate two potential optimizations from the
observations.

A. Poor Performance of WAFs

We classify WAFs into three categories, namely black-list,
white-list and White-and-Black-list.

• Black-list WAFs have a pluggable set of rules to filter
anomaly traffic by the signatures including WebKnight,
IronBee, ModSecurity and Shadow Daemon [22]. 1

• White-list WAFs such as NAXSI [23] only accept ex-
pected patterns in HTTP requests instead of recognizing
the known attacks.

• White-and-Black-list (i.e., combination) WAFs such as
Lua-resty-waf [24] use white-list rules before black-list
rule set.

We conduct several experiments to learn the performance of
existing WAFs in Table I. We use request per second (RPS) to
measure the performance of WAFs and KA/N-KA represents
whether the proxy is kept alive. To obtain the RPS of different
WAFs, we utilize WAF-Bench [25] to send GET requests for
1 minute from back-end servers through each WAF on our
testbed (§VI-A). The rulesets used in each WAF is also listed
in the table. Among, “limited” represents that IronBee only
imports limited rules of CRS, and “custom” represents that
Lua-resty-waf imports some customized white-list rules.

Table I shows poor efficiency for black-list WAFs, while
Lua-resty-waf and NAXSI achieve higher performance be-
cause white-list helps pass a wide range of requests. However,
white-list has a high false positive rate of detection in the
initial stage, and it needs continuous tuning by experienced
engineers to maintain the white list. Therefore, to eliminate
the gain of white-list, we import the same rules to compare
their performance in Table II, which depicts that Lua-resty-waf
achieves even worse performance than ModSecurity. Overall,
the performance gap that WAF brings to Nginx — for instance,
the slowdown of ModSecurity is up to 10x — has been turned
out to be a bottleneck.

1Note that ModSecurity provides interface for customers to customize
white-listing rules, but the majority of rule set it leverages are blacklist.

TABLE I: Performance Comparison of WAFs

Reverse Proxy Mechanism Ruleset 64B (KRPS) 10240B (KRPS)
N-KA KA N-KA KA

Nginx \ \ 11.98 16.32 11.01 15.51
Nginx + IronBee Black-list Limited 1.01 1.33 0.97 1.31
Nginx + ModSecurity Black-list CRS 1.51 1.72 1.09 1.66
Nginx + NAXSI White-list Doxi 10.62 15.66 10.00 14.83
Nginx + Lua-resty-waf Combination Custom 5.33 6.56 5.04 6.12

TABLE II: ModSecurity VS. Lua-resty-waf

64B (KRPS) 10240B (KRPS)
N-KA KA N-KA KA

Mod (no rule) 6.18 7.53 5.77 7.04
Lua (no rule) 6.15 7.82 5.77 7.15
Mod (48 rules) 5.58 6.95 5.23 6.31
Lua (48 rules) 5.11 6.35 4.81 5.85

To explore its root causes, in this paper, ModSecurity with
CRS is chosen as an example for WAF performance bottleneck
study. Because of ModSecurity’s mature and reliability, it
becomes the most popular open-sourced WAF, which has been
widely used by web application maintainers and cloud service
providers like Microsoft Azure [26]. However, it should be
noted that our work can be applied to most rule-based WAFs
because their workflows are similar.

B. Redundant Target Computation

In this section, we reveal that poor performance sources
from a huge number of redundant target computation and thus
motivate our first strategy: Target-based Cache.

1) Motivation: Because of target-specific filtering in WAF,
intuitively, complicated requests with multiple targets will cost
more than simple ones. To prove this intuition, we send simple-
requests traffic and real traffic to ModSecurity and quantify
WAF’s performance gap.

Here we randomly select 100,000 simple GET requests
and real traffic respectively and send them from one client
to ModSecurity-enabled Nginx (IIS and Apache have the
similar results) to measure the proxy engine’s performance.2

Paranoia Level is a setting ranging from 1 to 4 which
represents the sensitivity level of CRS.

From Table III, the overhead of real traffic is twice as much
as simple requests in Paranoia Level 1; while the gap is
up to 4x in Paranoia Level 4.3

It reveals that compared with simple requests, complex
HTTP requests with multiple targets downgrade performance.
And as Paranoia Level increases, the performance gap
widens.

2) Insights: Inspired by this finding, caching the complex
requests will help reduce the overhead.

We initially want to leverage existing Web Page Caching
technology [27], [28] to achieve this goal. However, it is
hard to apply it to WAF because Web Page Caching only
considers Request URL but WAF focuses on different targets
to do a comprehensive check (§II-B). Besides, most URLs

2The workloads and testbed are described in Section VI-A
364B and 10240B only varies in the length of response



TABLE III: Performance of Traffic

Single Core
ModSecurity (KRPS)

Simple Requests Real
Traffic64B 10240B

Paranoia Level 1 (low) 1.72 1.62 0.83
Paranoia Level 2 (mid) 1.61 1.49 0.53
Paranoia Level 3 (high) 1.54 1.36 0.42

Paranoia Level 4 (very high) 1.48 1.09 0.39

TABLE IV: Distribution of Target Values

App ➊ App ➋ App ➌ App ➍

ARGS 7.4% 51.3% 18.9% 20.3%
ARGS NAMES 51.2% 99.2% 64.8% 48.4%
COOKIE 2.2% 100% 13.5% 36.1%
COOKIE NAMES 79.1% 100% 94.3% 56.0%
USER-AGENT 37.4% 100% 83.3% 63.3%
Whole Requests 1.16% 0.78% 1.66% 4.35%

are different which will bring a high cache miss ratio. In that
case, typical web cache doesn’t work, so we consider to build
a Target-based Rule Cache.

We explore the distribution of target values. We analyzed
the real product traffic for 1 hour from four different typical
applications. App ➊ provides software solutions and services.
App ➋ is an internal data fetching application of a global
security company. App ➌ provides web service from an
ISO Certified Company. App ➍ is a manufacturer‘s internal
network for data transferring.

Table IV shows the total frequency of top 10 prevalent
values in each target. HTTP requests share similar patterns.
Especially the targets ARGS, COOKIE and USER-AGENT are
very common to be shared. As a result, when rule detects these
targets, it will do repetitive operations.

Target-based Cache can help cache these results so that
ModSecurity does not need to repeatedly check the same field
in different requests, which will cut much overhead.

3) Challenges: It turns out to be a conflict between too
many target values and limited target cache pool. So how to
select caching items is a challenge. To address this issue, we
propose two objectives. According to that, our strategies are
proposed in Section IV-A.

• “The Fewer, The Better”: Processing fewer rules will
achieve better performance. Caching the whole request
can directly deliver the results and process no rules.
However, it is useless because most requests are different.

• “The Higher, The Better”: Caching higher frequency
values will achieve a higher cache hit ratio. Target-based
Cache partially caches the high-frequency target values
and their intermediate results of rule-processing.

C. Redundant Rule Processing

Target-based Cache can reduce the overhead of repetitive
detection, but traffic still need rule processing when the cache
miss happens. However, the naive practice of sequentially
going through rules can result in processing many unnecessary
rules. In this section, we reveal the potential gain of ruleset
re-ordering.
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Fig. 3: Performance with Different Rule Location

1) Motivation: It is universally known that some attacks
are more popular in real world. We sent real traffic extracted
from workloads (§VI-A) to count the triggered frequency of
rules and found that 87.07% of attacks are blocked by top
10 rules as shown in Figure 2. More interesting thing is that
7 rules among them have prefix 942 in the Rule ID, which
shows that SQLI Injection dominates in the whole threats.

As a result, different rules have various impacts on real-
world traffic. Just a few rules can block the majority of traffic.

2) Insights: Motivated by this finding, we propose an
approach to re-schedule the rules. Under self-contained mode,
ModSecurity blocks the request as soon as it triggers one rule.
So if WAF could block an attack at a very early stage, then
WAF could cut overhead. It enlightened us that the ordering
of triggered rules matters performance.

We selected Rule ID 942330 from top 10 rules to compare
the performance by adjusting its location. We moved the rule
group (i.e., rule file) containing 942330 in the ruleset, and put
942330 at the top and bottom of the group. Then we flooded
requests which only trigger 942330. Shown in Figure 3,
performance is better when the group has a more front position
and the rule is at the top. However, moving the rule group
from 18th to 24th location does not make a difference. It is
because that ModSecurity audits the requests by rules in 5
phases4. Rules in the last 6 files target at phase 3 and 4 while

4Request header, request body, response header, response body and logging.



Rule 942330 is at phase 2. Even though we move 942330
to the end of ruleset, ModSecurity still processes 942330 in
phase 2.

From above experiments, we can infer that adjusting the
rule’s location in the ruleset can accelerate the blocking
efficiency of ModSecurity. And the overhead of a ruleset is
not static but related to traffic patterns. Based on this insight,
we aim to design an online learning optimal algorithm to tune
rules‘ priority.

3) Challenges: Designing a run-time reordering algorithm
for WAF is non-trivial. Specifically, we identify the following
challenges:

• Challenge i: Rules cannot be moved freely because of
dependency. Most rule groups are independent, but re-
ordering rules within a group may cause incorrectness.

• Challenge ii: Rules’ priority cannot simply depend on
the triggered frequency. There are other influence factors
such as the processing time of rules.

D. Lessons Learned

Learning from this section, we propose two potential opti-
mizations and address distinct challenges in each stage:

Target-based Cache is more complicated than Web Page
Caching that it partially cache high-frequency target values.
The challenge is how to determine cache replacement policy
and collect related metrics.

Rule Set Re-ordering aims to improve the efficiency of
rule processing. It is challenging to find the optimal order of
rules with minimal overhead.

Next, we build upon these insights to design optimization
strategies, working towards the ideal of WAF rule engine.

IV. PROPOSED DESIGN

The insights learned in Section III are instrumental in
our design of RuleCache. Figure 1 shows an overview of
our proposed design. In the online engine, we utilize WAF-
Bench [25] and WAF Simulator5 to replay online traffic in
one time window, delivering the results to Analyzer which
consists of Rule Result Cache (§IV-A) and Rule Ordering
Cache (§IV-B). These two modules will respectively generate
an optimal rule-order and a rule-result cache table to guide
ModSecurity in the next time window. Additionally, we add
Rule Pre-pruning Cache (§IV-C) module in off-line engine
to deal with the static rules in the compiling process.

When one request enters RuleCache, it firstly checks
whether some targets hit the cache in rule-result table. If the
result is “deny”, it can deny the request and send back directly.
If not, it will bypass the cache-hit targets and process the
dynamic rule-set in an optimal order.

Next, we describe detailed optimization strategies of each
module.

5A homemade tool to simulate WAF and meanwhile inspect the statistics
of traffic patterns, e.g., target values’ distribution.
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A. Rule Result Cache

To build a Target-based Cache (§III-B), we answer follow-
ing two questions: how to define the cache replacement policy,
and how to collect the detailed metrics.

1) Cache Replacement Policy: We need to cache the value
of targets and its processing result (i.e., pass or deny) in
this module. Then when one request queries its target value
cached, RuleCache sets this target as NULL and simplifies
the request. Our cache table is like white-list filtering to some
extent. However, there are more than a million target values
in just 10 minutes whereas the rule cache table is limited. So
we need to define our cache replacement policy to cache the
better ones. In preliminary, we define a term weight to sort
the priority of values.

An ideal cache replacement policy must take several met-
rics into account, such as temporal locality and update pat-
terns [29]. Based on previous insights, we cache the target
values with higher repetitive frequency and higher processing
overhead to reduce more redundant computations. We define
our policy as a weight-based policy. weight is calculated as
follows:

Weight = Frequency × ProcessingT ime (1)

Where:
• Frequency: The target value‘s occurrence frequency in a

time window.
• Processing time: The time to process one specific target

value through all rules. However, some rules may have
multiple targets. We only record the time of processing
the certain target instead of the whole rule.

So we need to classify the values into two cases to collect
the processing time. When the value is passed (i.e. benign
value), its processing time is the overhead of dealing with it.
When the value is blocked (i.e. malicious value), processing
time is the overhead on tackling with the whole request.

2) Detailed Metrics Collection: To calculate the weight,
we need to collect Frequency and Processing time in WAF
Simulator. The process is shown in Figure 4.

Frequency. For each time period, we calculate instant fre-
quency of target values and get the average frequency by
moving average algorithm. In order to reduce the memory
overhead, we just keep the TOP x frequency list of all the
target values.



According to our analysis, we classified the target values
into benign values and malicious ones. For the benign values,
we pick top x1 values whose frequencies are more than f1%.
We notate them as bi (i ∈ [1, x1]). For the malicious values,
we pick top x2 values which account for more than f2%. We
notate them as mi (i ∈ [1, x2]). Obviously, x is the sum of
x1 and x2. We counted the value distribution of the targets by
real traffic, and f1% and f2% are selected as 10%.
Processing time. Then, we send traffic to WAF Simulator
and trace the processing time of the target values. Because
real traffic varies, it is time-consuming for WAF Simulator
to measure the processing time of all the values at runtime.
Therefore, we need to rank them and only do measurements
for more frequent values.

For the benign values, we extract the requests with bi from
real traffic to make up our dataset. Especially, to eliminate the
processing time of other targets, they should be set as NULL.
As shown in Figure 4, Processing time of benign value bi is
calculated as (2), where there are n requests in real traffic:

ProcessingT ime(bi) =
PassingT ime(bi)

n× Frequency(bi)

(Frequency(bi) > f1%)

(2)

For the malicious values, we choose top x2 values. Then we
also make a malicious dataset which contains all the requests
with specific values and send these requests to WAF Simulator.
Different with benign ones, we directly send these requests to
WAF Simulator to obtain the blocking overhead. Processing
time of malicious value mi is calculated as follows:

ProcessingT ime(mi) =
BlockingT ime(mi)

n× Frequency(mi)

(Frequency(mi) > f2%)

(3)

B. Rule Ordering Cache
To address challenges in Section III-C, our approach has

two steps: how to deal with the rule dependency, and how to
determine the priority of rules.

1) Rule Dependency: Rule dependency can be categorized
into two types: data hazards and control hazards.

Data hazards occur when rules modify some values of
requests in a processing chain. Ignoring potential data haz-
ards can result in detecting faults. There are two ACTIONS
causing data hazards, belonging to RAW (Read After Write)
dependency:

• Set Var: One’s target relies on another’s action results.
Take Rule 912150 and 9121606 for instance. The target
of 912160 is DOS_COUNTER, which has been changed
by the action of 912150. So 912150 must be put ahead
of 912160.

• Expire Var: It causes right-value dependency. For ex-
ample, the left-value of Rule 910110 is assigned by a
variable whose value depends on the previous rules.

6You can get rule details from https://github.com/SpiderLabs/owasp-
modsecurity-crs/tree/v3.2/dev/rules.
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1 # Rule 912150
2 SecRule TX:EXTENSION "!@within %{tx.

static_extensions}" "setvar:ip.
dos_counter=+1"

3

4 # Rule 912160
5 SecRule IP:DOS_COUNTER "@ge %{tx.

dos_counter_threshold}" "phase:5,\ "
6

7 # Rule 910110
8 "expirevar: ip.reput_block_flag=%{tx.

reput_block_duration},\ "

Figure 5(a) illustrates part of rules with data hazards. The
vertex denotes a rule, and the directed edge means the delivery
of results. Vertex 912130 points to 912160 means that Rule
912160 depends on results of 912130.

For the rules with data hazards, we still separate them into
different groups but maintain their certain order when doing
optimizations. It could make the dynamic ruleset more flexible.

Control hazards are caused by the action skipAfter which
tells ModSecurity to jump over rules until it reaches the End
Marker in rule-set. There are two types of rules causing
control hazards:

• Static: The rules target at PARANOIA_LEVEL.
• Dynamic: The rules are categorized into intra-file skip-

ping and inter-file skipping. (i) Intra-file skipping rules
will jump to their End Marker. (ii) Inter-file skipping
rules jump to their End Marker in another file.

Figure 5(b) shows the rules with dynamic control hazards.
The vertex denotes a rule, and the directed edge means the
direction of skipping. The end of edge is not a rule but an End
Marker. For example, 910120 points to END_RBL_LOOKUP
means that 910120 skips to the End Marker.

Solutions. For the rules with data hazards, we move them
freely but maintain the original order of themselves.

For the intra-file skipping rules with control hazards, we
cannot insert anything between them and their End Marker.
So we maintain them as a whole group. For the inter-file
skipping rules, it is very challenging to solve the hazards.
Fortunately, CRS only has one inter-file skipping rule called
910000. It initially checks if the client’s IP has already been
blacklisted and jumps to the end directly. So we still put it at
the very beginning.



In conclusion, we split 24 rule groups into 119 rule sub-
groups in total.

2) The Formulation of Overhead: Given real traffic during
a time period, our optimization goal is to find an optimal rule-
order with the minimal overhead.

The notation is as follows. There are N rule-subgroups
called A1 to An. {G1, G2, ..., Gn} is a random sequence of
A1 to An, representing the actual order of rule-subgroups.
In four phases of ModSecurity, we apply our optimization
algorithm separately to get the best order7. We represent the
hit probability of group Gi in phase 1 as P1(Gi), average
triggered time of group Gi as T1(Gi), average non-triggered
time of group Gi as NT1(Gi), and so forth.

We applied Naive Bayes Model [30] to estimate the math-
ematical expectation of all the rule-subgroups’ overhead. To
sum up, the expectation of overhead is formulated as (IV-B2).

Eoverhead =

4∑
j=1

n+1∑
i=1

{[
j−1∏
l=1

n∏
k=1

(1− Pl(Gk))]

·
i−1∏
k=1

(1− Pj(Gk)) · Pj(Gi) (4)

·[
j−1∑
l=1

n∑
k=1

NTl(Gk) +

i−1∑
k=0

NTj(Gk) + Tj(Gi)]}

Especially,

Pl (Gn+1) = 1, Tl (Gn+1) = 0

The subscript l above means the lth phase.
3) The Optimization of Rule Location: To make the ex-

pectation of overhead as low as possible, we adopted heuristic
algorithm to search for the optimal solution of (IV-B2). Among
multiple algorithms such as Simulated Annealing, Particle
Swarm Optimization and Genetic Algorithm, we decided to
choose Genetic Algorithm (GA) because GA is known to
perform well in solving combinatorial optimization problems
and its gene is naturally suitable for re-ordering.

Genetic algorithm is a meta-heuristic optimization inspired
by the process of natural selection including operators such
as mutation and crossover [31]. The evolution is an iterative
process, with the population in each iteration called a genera-
tion. In each generation, the fitness of every individual in the
population is evaluated. In this case, the fitness value of GA
was set to the countdown of overhead in (5) so that the largest
fitness value could lead to the minimal overhead.

Fitness = 1/Eoverhead (5)

We regarded a possible order of rule-subgroups
{G1, G2, ..., Gn} as a chromosome. When two chromosomes
crossover, they exchange the corresponding gene fragments.

7Rules in logging phase have to be processed in the end. So we don’t
re-order them. FYI, the introduction of rule phases is in Section III-C.

However, it may cause conflicts because the particularity
of an order. All the elements in an order must be unique,
but duplication may arise after two orders exchange their
elements. Thus we developed a method to check and eliminate
the conflicts after crossover.

Also, some optimizations were applied to GA in order to
improve its efficiency. We always maintained the best one
in four chromosomes when crossover instead of randomly
picking. Besides, we added a step of reversing to reverse
the whole gene fragment, in order to avoid falling into local
optimal solutions.

C. Other Optimizations

For other incremental optimizations, we present an off-line
processing method Rule Pre-pruning Cache to reduce run-
time overhead.

By counting the rules in CRS, we found there are 759 rules
in total, and among them 169 rules are about paranoia level
control which is up to 22%. However, when we inspected
the rules, we found that the paranoia level control is actually
achieved by a kind of rules which have nothing to do with the
HTTP traffic.

The paranoia level rules are dispersing all over the whole
rule-set to split the rules into a few regions which correspond-
ing to the paranoia levels. ModSecurity processes the rules in
sequence until it reaches the rules related to paranoia level.
And then, ModSecurity chooses to continue processing rules
below the configured paranoia level or jump over the rules that
beyond the level.

Taking advantage of this characteristic, we removed the
rules whose level is higher than target paranoia level along
with the paranoia level control rules manually.

Similar with Paranoia Level control rules, there are
other types of rules also non-related to HTTP traffic, which
are enumerated as follows:

• Action Classification Cache: Action classification is
very heavy in ModSecurity because ModSecurity will
put all the actions in one table and classifies them at
runtime per request. To save the runtime overhead, we
cached the action type after classification at first time.
When ModSecurity handles following requests, it does
not need to classify the actions in rules at runtime.

• Set Var Cache: “Set Var” action assigns value to variable
at runtime. However, we observed that part of the “Set
Var” actions assign the static value to variables in the
context. ModSecurity does not know the variable and
value of “Set Var” until it parses the string of “Set Var”
in rules at runtime. Our solution is to cache the variable
and value of each “Set Var”. If the value stays unchanged,
ModSecurity directly assigns the value to variable without
parsing the string at runtime. Otherwise, ModSecurity
updates the cache after parsing the “Set Var” at runtime.

• Skip After Cache: “Skip After” is an action that tells
ModSecurity to jump over rules until it reaches an End
Marker. The paranoia level control rules use “Skip
After” actions to jump over rules that do not beyond



the current paranoia level. Before ModSecurity reaches
the End Marker, it has to check every rule at runtime
which causes overhead. Our Rule Pre-pruning Cache
keeps an index of the End Marker. When ModSecurity
executes the ”Skip After” action, it could jump to the
index of End Marker immediately without checking the
rules.

• Logging: ModSecurity logs the intermediate data when
processes the rules and prints out data in log file if
necessary. However, the logging in ModSecurity is a
two step action. ModSecurity composes the log message
at first. Then it checks the log level at runtime and
decides whether to print out the message into file. The
log message is always composed even it’s not required.
We cached the log decision for ModSecurity at the first
time, and ModSecurity does not compose log message if
the logging function is off.

This design helps ModSecurity to acquire an additional gain
in Section VI-D.

V. IMPLEMENTATION

To evaluate our design, We implemented a prototype of
RuleCache containing offline engine and online engine.
Then we deployed the modules in ModSecurity 2.9.1.

In the offline engine, Rule Pre-pruning Cache detects the
rules with static results by compiler. In the online engine, we
firstly implemented a tool WAF-Bench which could help us
to generate and send requests. We then utilized a modified
version of ModSecurity called WAF Simulator to generate
the raw data needed in Analyzer. There are two modules in
Analyzer, namely Rule Result Cache and Rule Ordering
Cache. We adopted an optimized Genetic Algorithm in order
to look for the optimal order in Rule Ordering Cache.
Finally, we built a cache result table in Rule Result Cache to
cache high-frequency target values. The whole prototype was
implemented in C.

VI. EVALUATION

In this section, we evaluate the performance gains achieved
by three modules in our experiments. The results are from
end-to-end measurements in Nginx with RuleCache.

A. Workloads

Testbed setup. Our testbed consists of 6 servers located under
a ToR switch as shown in Figure 6. We use 1 server as a
client, 1 server as a proxy and 4 servers as backend servers
which have 8 virtual machines for each (i.e., 32 VMs in
total). Each server is a Dell PowerEdge R730 with two 16-
core Intel Xeon E5-2698 2.3 GHz CPUs and 256GB RAM.
Every server has one Mellanox ConnectX-3 Pro 40G NIC.
The switch is Arista DCS-7060CX-32S-F with Trident chip
platform. The web servers run Nginx 1.11.5 in proxy mode
with ModSecurity 2.9.1. The rule-set in our testing is CRS 3.0
and Paranoia Level is set to 2 as default.
Workload datasets. Microsoft Azure Application Gateway, a
WAF-enabled L7-load balancer for customers, serves live user

Reverse Proxy

VMs
 

Switch

WAF

L7 LB

Client Reverse Proxy

Backend Servers

Reverse Proxy

Reverse Proxy

Fig. 6: Testbed Topology
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Fig. 7: Malicious Traffic VS. Total Traffic

traffic for a diverse set of web applications. We monitor the
real traffic to make up our datasets, contain 861,988 requests
from Microsoft Azure Application Gateway for six days from
July 16, 2019 to July 21, 2019.

Additionally, to simulate some cases that we cannot collect
enough specific traffic in real world, we use WAF-Bench to
generate random requests according to given patterns, e.g.,
simple GET requests and requests of certain attack types.

The analysis of real traffic is shown in Figure 7, justifying
that the proportion of malicious traffic varies in the real world,
ranging from 4.79% to 42.24%.

B. Rule Result Cache
It is necessary for us to evaluate the performance of mul-

tiple frequencies and sizes of targets, because the real traffic
patterns are apparently different (§III-B).

By testing the weight of multiple targets, we found that
the target values of ARGS and COOKIE always have priority
in our weight-based cache, while the the target values of
USER-AGENT weigh less than them though it also has high
frequency. It is because that shown in Table V, 104 and
84 rules of 759 rules in total inspect ARGS and COOKIE,
respectively, but only 17 rules inspect USER-AGENT, causing
the imbalance processing time through the whole rule set.
Therefore, the list of targets in our evaluation only include
ARGS, COOKIE, and we show their performance gain with
the increasing size of cookies and arguments in Figure 8.

For the cached COOKIE in Figure 8(a), as the number
of cookie pairs varies from 1 to 6, the performance gain



(a) Performance Gain of Cookie Caching

(b) Performance Gain of ARGS Caching

Fig. 8: Performance Gain with Different Frequency of Target
Values in Rule Result Cache

TABLE V: Top 10 Rule Targets in CRS

Rule Targets Count Rule Targets Count

TX:PARANOIA LEVEL 169 REQUEST COOKIES 84
ARGS 104 REQUEST FILENAME 53

ARGS NAMES 102 RESPONSE BODY 28
XML:/* 94 USER-AGENT 17

REQUEST COOKIES NAMES 84 TX:sql error match 16

increases from 20.46% to 54.94% when the 50% of total
traffic have the cached cookie field. The performance gain
of 3 cookie pairs grows from 7.13% to 45.61% when the
percentage of traffic with cached cookie field increase from
10% to 50%. In Figure 8(b), we also find that ARGS has the
similar performance gain as COOKIE. Therefore, Rule Result
Cache improves the performance of WAF by around 7% to
57% with different workloads and cache percentage.

C. Rule Ordering Cache

There are two modes for checking rules in CRS, namely
self-contained mode and anomaly scoring detection mode.
To clarify, we apply our Rule Ordering Cache under both
modes. If self-contained mode is enabled, ModSecurity will
block the request immediately once it triggers the rule. For
anomaly scoring mode, ModSecurity checks the anomaly score
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Fig. 9: Performance Gain in Rule Ordering Cache with
Different Proportions of Malicious Traffic

against a threshold at last. But we modify it to be checked
every time when it triggers a rule.

To evaluate the optimization strategy, we generated several
workload datasets with various attack ratios and attack distri-
bution to explore the benefits of our design.

Attack ratio means the proportion of malicious traffic. We
set it as 10%, 20%, ..., 100% respectively in each set.

Attack distribution represents the probability distribution
for each rule-group being triggered. We did experiments with
traffic in the following distributions:

• Best Distribution. In the original, all the malicious traffic
hit the last rule-group. After our optimization, the last
group is moved forward to accelerate the efficiency of
blocking.

• Worst Distribution. Attacks are all triggered at the very
beginning originally. Adjusting their order cannot bring
much gain.

• Even Distribution. Attacks trigger all the rule-groups in
an average frequency.

• Real Distribution. The probability distribution is pro-
duced by fitting that of real traffic. Actually, some rule-
groups are hit more frequently than others in the real
world.

For the diverse sets varying in attack ratios and distributions,
the end-to-end performance gain of optimal order is shown in
Figure 9.

It comes to a conclusion that as the proportion of malicious
traffic increases from 10% to 100%, the performance gain
grows from 22.27% to 103.61% when the traffic fits the
real distribution. However, it is almost impossible to reach
100% attacks in the real world. According to Figure 7, the
ratio of malicious traffic is ranging from 4.79% to 42.24%,
then we assume that the ratio is up to 50%, and therefore
Rule Ordering Cache obtains the gain of around 22.27% to
69.20% with real distribution of traffic. Considering best and
worst distribution, it can improve the performance up by 1.08x
to 2.48x.



TABLE VI: Performance Gain in Rule Pre-pruning Cache

64B 10240B
N-KA KA N-KA KA

IIS-Ori 774 - 808 - 724 - 748 -
IIS-Cache 1802 133% 1939 140% 1576 118% 1728 131%
ModSec-Ori 1525 - 1697 - 1484 - 1657 -
ModSec-Cache 2425 59% 2894 71% 2343 58% 2795 69%

D. Rule Pre-pruning Cache

Besides our two main optimizations, we also have enabled
a prototype cache engine on ModSecurity with the working
cache set we mentioned in Section IV-C. To recap, this engine
is an offline engine, thus we do not follow the setting of
traffic workloads when evaluating Rule Result Cache and
Rule Ordering Cache. The experimental results are shown
in Table VI. Our cache engine could achieve up to 140.0%
performance improvement compared to original ModSecurity.

E. Overall System Evaluation

1) Performance Gain: We build a RuleCache system
including all of them and measure the performance using
real-traffic. After running 1,000,000 real-traffic requests, our
system obtains the performance of 2813.26 RPS. Comparing
to the original ModSecurity, overall system can achieve about
5.5x performance gain.

2) Security Analysis: We send same real-traffic to original
ModSecurity and RuleCache and compare their generated
logs. They are completely consistent so that the cache of rule
results and re-arranging of rule orders do not reduce correct-
ness. RuleCache has been turned out to fulfill performance
optimization without sacrificing security, which satisfies peo-
ple’s need today in pursuing efficiency.

VII. RELATED WORK

Existing performance analysis works on WAFs always focus
on the detection accuracy against web attacks, remaining the
poor efficiency of rule-processing an open problem.

Sobola et al. [32] provide insight on detection capability of
ModSecurity with CRS v.3.2 at default level, and how well it
can protect web server against Denial of Service (DoS) attacks.
Additionally, it measures the performance on web server in
terms of Throughput, Transaction rates, Concurrency, whereas
lacks the analysis of WAF’s poor throughput. Thang et al. [33]
apply effective algorithms to train WAFs automatically for
increasing its efficiency in detecting attacks. Concretely, this
work introduces parameterization of the task for increasing
the accuracy of query classification by the random forest
method, thereby creating the basis for detecting attacks at the
application level. Mukhtar et al. [34] investigate the efforts
to detect and prevent the SQL injection attacks, and they
also assess the efficiency of Modsecurity in preventing SQL
injection attacks. More recently, Arnaldy et al. [35] propose
an optimal web server that applies a package namely Reverse
Proxy which is used to optimize a web server and WAF which
is used to maintain the security of a web server.

VIII. CONCLUSION

In this paper, we explored the current design and imple-
mentations of modern WAF solutions. Based on the explo-
ration results, we analyze several root causes of performance
slowdown and get some insights such as target-based cache
and rule set reordering. These insights enlighten our de-
sign of RuleCache system, including Rule Result Cache,
Rule Ordering Cache and Rule Pre-pruning Cache. Our
evaluation demonstrates that the prototype can achieve 5.5x
performance gain. Therefore, an efficient rule cache engine
should be an effective way to boost the current performance
of WAF.
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