
PipeDevice: A Hardware-Software Co-Design Approach to
Intra-Host Container Communication

Qiang Su
City University of Hong Kong

Hong Kong SAR, China

Chuanwen Wang
CUHK

Hong Kong SAR, China

Zhixiong Niu
Microsoft Research

Beijing, China

Ran Shu
Microsoft Research

Beijing, China

Peng Cheng
Microsoft Research

Beijing, China

Yongqiang Xiong
Microsoft Research

Beijing, China

Dongsu Han
KAIST

Daejeon, South Korea

Chun Jason Xue
City University of Hong Kong

Hong Kong SAR, China

Hong Xu
CUHK

Hong Kong SAR, China

ABSTRACT
Containers are prevalently adopted due to the deployment and per-
formance advantages over virtual machines. For many container-
ized data-intensive applications, however, bulky data transfers may
pose performance issues. In particular, communication across co-
located containers on the same host incurs large overheads in mem-
ory copy and the kernel’s TCP stack. Existing solutions such as
shared-memory networking and RDMA have their own limitations,
including insufficient memory isolation and limited scalability.

This paper presents PipeDevice, a new system for low over-
head intra-host container communication. PipeDevice follows a
hardware-software co-design approach — it offloads data forward-
ing entirely onto hardware, which accesses application data in
hugepages on the host, thereby eliminating CPU overhead from
memory copy and TCP processing. PipeDevice preserves memory
isolation and scales well to connections, making it deployable in
public clouds. Isolation is achieved by allocating dedicated memory
to each connection from hugepages. To achieve high scalability,
PipeDevice stores the connection states entirely in host DRAM
and manages them in software. Evaluation with a prototype imple-
mentation on commodity FPGA shows that for delivering 80Gbps
across containers PipeDevice saves 63.2% CPU compared to kernel
TCP stack, and 40.5% over FreeFlow. PipeDevice provides salient
benefits to applications. For example, we port baidu-allreduce to
PipeDevice and obtain ∼2.2× gains in allreduce throughput.

CCS CONCEPTS
• Networks→ Network architectures.

KEYWORDS
Container Communication, Hardware-Software Co-Design

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’22, December 6–9, 2022, Roma, Italy
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9508-3/22/12. . . $15.00
https://doi.org/10.1145/3555050.3569118

ACM Reference Format:
Qiang Su, ChuanwenWang, Zhixiong Niu, Ran Shu, Peng Cheng, Yongqiang
Xiong, Dongsu Han, Chun Jason Xue, and Hong Xu. 2022. PipeDevice: A
Hardware-Software Co-Design Approach to Intra-Host Container Commu-
nication. In The 18th International Conference on emerging Networking EXper-
iments and Technologies (CoNEXT ’22), December 6–9, 2022, Roma, Italy.ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3555050.3569118

1 INTRODUCTION
Containers have become prevalent in public clouds due to the per-
formance, portability, and deployment benefits compared to virtual
machines [2, 29]. They support awide variety ofworkloads, frommi-
croservices and serverless computing to data analytics and machine
learning. Containerized applications often entail extensive bulky
data transfers to exchange intermediate results of data processing
among peers. Examples include the shuffle stage in MapReduce
jobs [33, 44] and the model update process with parameter server
and allreduce in distributed machine learning [10, 38].

With these applications on the rise, it is increasingly common for
bulky transfers to occur in the intra-host scenario, and we expect
the trend to continue in the near future. For example, in construct-
ing a so-called service mesh, a sidecar proxy container is deployed
in each (micro-)service instance (with one or more containers) to
route all traffic from this instance to other services [11, 25, 26].
Multiple services may also co-locate on the same server and com-
municate through common network stacks like TCP. Spark and
other data-intensive frameworks deploy the mappers and reducers
in containers that may also co-locate at the same server to exploit lo-
cality, and they may communicate through network stacks such as
TCP and RDMA [35]. Therefore, many cloud applications generate
massive intra-host traffic. Further, cloud operators and container
orchestrators often consolidate a tenant’s containers onto as few
servers as possible [8, 37, 46, 82] to improve efficiency. In addition,
with the server machines becoming more resourceful in terms of
CPU cores and memory [3], hundreds of containers can reside on
the same server.

Extensive prior work exists on reducing the overhead of bulky
transfers with TCP. They generally fall into two categories, soft-
ware and hardware approaches. The software approach uses shared
memory to reduce the memory copy overhead in the data path
[64, 80]. Due to the memory isolation requirement in public clouds

https://doi.org/10.1145/3555050.3569118
https://doi.org/10.1145/3555050.3569118

CoNEXT ’22, December 6–9, 2022, Roma, Italy Q. Su et al.

and the highmemory overhead for amultitude of connections (§2.3),
directly sharing memory between two containers is considered in-
feasible. A better way is to share memory between a container and
the hypervisor [80]. The copy between user and kernel spaces is
removed, and isolation is preserved since data is still copied across
container boundaries (by hypervisor). The downside is that copy
still burns precious CPU cycles which could be used to support
more application workloads.

Another approach to low-overhead intra-host container com-
munication is the hardware-based RDMA. By offloading the entire
network stack and memory copy to hardware, RDMA achieves high
throughput and low latency with no CPU overhead. However, it
is widely recognized that RDMA has poor scalability [43, 45, 56–
59, 77, 78]. The root cause is the contention of limited on-board re-
sources for connection state management [58, 78]. In fact, we show
that the performance of commodity RDMA NICs (RNICs) drops by
∼50%with 4096 connections (§2.4). As the number of containers and
connections increases, cache miss becomes unavoidable and perfor-
mance degrades. Although many prior arts [43, 45, 56, 57, 77, 77] try
to improve scalability by balancing the tradeoff between efficiency
and on-board state, they do not eliminate the main culprit. In addi-
tion, these solutions are for message-based RDMA semantics, and
still suffer from inefficiency on common stream-based applications
[17, 40, 49, 68, 75].

The fundamental question is, how can we build a customized
transport for intra-host container communication, that achieves
memory isolation, zero CPU overhead, and connection scalability
simultaneously?

We propose a new hardware-software co-design approach to
tackle this challenge. We rely on hardware offloading in order to
achieve isolation and eliminate CPU overhead. Then for scalability,
we keep the connection states in host DRAM and manage them en-
tirely in software so there is no contention of the limited hardware
resources. The cost is prolonged latency in connection management
at the hypervisor now, which is negligible for bulky transfers.

Specifically, we build a new system called PipeDevice following
this approach. PipeDevice exploits commodity hardware acceler-
ators (e.g., FPGA, SmartNIC) to forward data across co-located
containers, effectively creating a device that facilitates a communi-
cation pipe for them. Each socket is allocated dedicated memory out
of a hugepage region in the hypervisor, and application data in the
socket buffer is directly accessed by the hardware’s DMA engine
and copied to the destination memory address. This eliminates the
overheads of (1) copy between user and kernel spaces and (2) TCP
stack processing. To ensure memory isolation, the hugepage re-
gion is managed solely by the hypervisor who maintains the socket
buffer states. The hypervisor also manages the connection states, so
that data copy is streamlined and performed in a stateless manner
by hardware. PipeDevice also features a set of BSD socket-like APIs
for memory and communication to port applications easily.

PipeDevice is a hardware-software co-design approach for low-
overhead intra-host container communication. This co-design ap-
proach can be realized over different hardware other than FPGA,
with a different hardware design to interact with the DMA engine.
The software design of PipeDevice that manages connection and
queue management remains largely the same, and by exposing a
unified set of APIs applications do not need to change their code.

vNIC Driver

pNICveth

Ke
rn

el
U

se
rApp 0 App n...Container

TCP/IP
Processing

TCP Data
Copy

Bridge/vSwitch

Library

Figure 1: Current container networking architecture in the bridgemode. TCP
Data Copy denotes the data copy between the user and kernel spaces.

Note PipeDevice aims to exploit hardware that has already been de-
ployed in data centers, such as FPGA accelerators in Azure [42] and
SoC SmartNICs [27], instead of requiring new devices. In this paper,
we implement PipeDevice upon FPGA to illustrate its benefits.

We make the following contributions in this work:
• We present a comprehensive measurement study on the
overhead of container communication for long TCP connec-
tions (§2.2). Prior work focuses on the overheads of short
connections in host networking [54, 64, 66, 70, 79] or overlay
processing [84]. We also investigate RNIC’s scalability limita-
tion in intra-host communication (§2.4), while existing work
focuses on inter-host networking [43, 45, 56–59, 77, 78].

• We build PipeDevice for low-overhead intra-host container
communication (§3-§4). Our design represents a general
hardware-software co-design approach that addresses the
fundamental scalability issue of hardware-only solutions like
RDMA without performance penalty for bulky transfers. We
implement a prototype using commodity Intel Arria 10 FPGA
[19] on Linux kernel 4.9, and present tips of implementing
PipeDevice to enforce such hardware-software co-design
approach on various hardware. We show that our design is
feasible using a very small amount of on-board resources
(1.63% ALMs and 6.63% BRAMs).

• We conduct a comprehensive testbed evaluation for PipeDe-
vice (§5). It saves 3.93 CPU cores compared to kernel TCP
when delivering 80Gbps throughput and scales to 400 con-
nections without throughput degradation. As concrete use-
cases, we port baidu-allreduce [4] to PipeDevice with 113
lines of code change, and observe an end-to-end throughput
gain of ∼2.2×. We also build a network service chain using
PipeDevice’s new APIs. Its end-to-end completion time of
serving 10K requests is reduced by over 15% with 47% less
CPU overhead compared to FreeFlow.

2 MOTIVATION
We start by presenting the background of container communication
and analyzing the overhead of today’s intra-host container commu-
nication. We then discuss the limitations of existing solutions and
present our design choice.

2.1 Container Communication
Containers are essentially processes with namespace isolation; their
applications use standard network libraries such as BSD sockets to

PipeDevice: A Hardware-Software Co-Design Approach to Intra-Host Container Communication CoNEXT ’22, December 6–9, 2022, Roma, Italy

Component Major functions Function time [s] Component time [s]

TCP/IP

tcp_sendmsg 1.563

2.724 (27.2%)

tcp_write_xmit 0.248
tcp_transmit_skb 0.120
ip_queue_xmit 0.074
ip_local_out 0.183
ip_output 0.056
Others. . . 0.480

Bridge

br_handle_frame 0.062

1.576 (15.8%)

br_nf_pre_routing 0.302
__br_forward 0.306
br_nf_forward_ip 0.182
br_dev_queue_push_xmit 0.498
Others. . . 0.226

Memory copy - - 4.417 (44.2%)

Dev

veth_xmit 0.985

1.090 (10.9%)__dev_queue_xmit 0.088
Others 0.017

Total - 9.807 (10) 98.1%

Table 1: CPU time breakdown in intra-host container communication at the
sender side. The throughput shown by iperf is 32.00Gbps.

invoke the default TCP stack, as shown in Figure 1. Modern con-
tainer frameworks, such as Docker, containerd [9], and Kubernetes,
support multiple networking modes. Out of these, the host and
macvlan modes are rarely used in clouds due to poor isolation and
portability [61, 84]. So we consider the bridge and overlay modes,
in which a software bridge (or vswitch) is used for overlay routing
and control plane policy enforcement, as in Figure 1; each container
interfaces with the bridge/vswitch through a unique pair of vir-
tual NICs (vNIC and veth), and packets are eventually sent to the
network fabric via the bridge’s physical NIC (pNIC).

A direct result of this architecture is the long data plane path,
which is particularly expensive for intra-host communication. Data
is copied across the user and kernel spaces at both the sender and re-
ceiver, and the TCP stack is also traversed twice [84]. This is greatly
inefficient as transport failures (e.g., message loss, re-ordering)
and congestion rarely occur among intra-host peers, and shared-
memory approach also demonstrates this promise [47, 64, 73]. In
the following, we quantitatively characterize these overheads.

2.2 Breakdown of Communication Overhead
for Bulky Transfers

Bulky transfers are common in typical container workloads, such as
data analytics and machine learning for intermediate data exchange,
and service chaining in network function virtualization [53, 62,
81] for forwarding packets between network functions. Thus we
focus on the overheads of bulky transfers in intra-host container
communication.

We measure the CPU time spent on the major functions of the
data path of containers using bpftrace [5]. We launch iperf con-
nections that last 10 seconds. The target container is given one
core with other cores disabled, while the other container is given
enough cores to ensure it is not the bottleneck. The servers use Intel
Xeon E5-2698 v3 CPUs at 2.30 GHz. We do not consider overlay
processing here (see §6) because although overlay processing at
the software router also incurs overhead, it can be offloaded to
programmable hardware with high efficiency [48].

Tables 1 and 2 present the results for intra-host container com-
munication in the bridge mode. The send and receive throughput
is different because of the different overhead of TCP send path

Component Major functions Function time [s] Component time [s]

TCP/IP

tcp_recvmsg 0.225

2.237 (22.4%)

tcp_rcv_established 0.723
ip_rcv 0.209
ip_rcv_finish 0.101
ip_local_deliver_finish 0.753
Others. . . 0.226

Bridge

br_handle_frame 0.042

1.369 (13.7%)

br_nf_pre_routing 0.252
__br_forward 0.041
br_nf_forward_ip 0.151
br_dev_queue_push_xmit 0.632
Others. . . 0.251

Memory copy - - 4.779 (47.8%)

Dev

veth_xmit 0.999

1.101 (11.0%)__dev_queue_xmit 0.092
Others 0.010

Total - 9.486 (10) 94.9%

Table 2: CPU time breakdown in intra-host container communication at the
receiver side. The throughput shown by iperf is 37.66Gbps.

and receive path. The memory copy time is extracted from either
tcp_sendmsg() or tcp_recvmsg() and shown separately. The to-
tal time is slightly less than 10s since we do not include the time
spent on syscalls and user-space processing. We observe that for
send, the dominant overhead is memory copy which takes 44.2%
CPU time, followed by the TCP/IP processing at 27.2%. The bridge
consumes another 15.8%. Similarly, at the receiver, memory copy
and TCP/IP processing together account for 70% of CPU time, as
shown in Table 2.

These overheads directly impact application performance. To
demonstrate this, we profile allreduce, a communication primitive
commonly used in distributed training for deep learning models [55,
74]. Allreduce allows workers to exchange the gradients obtained
on their local batch of samples and then calculate the global average
for model updates. We use the MPI_Allreduce implementation in
Open MPI v4.1 [31] among eight single-core containers on the same
server. We vary the message size and run 100 iterations for each
data point. Figure 2 shows the CPU time breakdown. We count the
in-kernel time spent by the program in the TCP stack as the time
for communication, and the rest as the time for application logic.
We can see that communication accounts for ∼60% to 70% of total
CPU time. This demonstrates that salient performance gains may
be achieved by streamlining container communication.

2.3 Why Not Shared Memory?
Many systems have exploited shared-memory networking for intra-
host communication [47, 64, 73]. Though it has low CPU overhead,
it cannot guarantee memory isolation which is critical in public
clouds [53, 83]. The typical approach, such as in SocksDirect [64],
is to have a unique shared memory region between two co-located
processes so both can directly access the data. This means that
a dedicated shared memory region must be created between any
pair of communicating containers, which inevitably breaks the
isolation requirement of public clouds. In addition, the dedicated
memory regions have to be allocated at container launch time,
usually leading to linear increases in the memory overhead when
the number of container pairs grows. Therefore, the shared-memory
approach has high memory overhead. For example, to support 32
single-core containers where each has 512 sockets (each socket
ring buffer is 4MB), a 2GB memory chunk needs to be allocated

CoNEXT ’22, December 6–9, 2022, Roma, Italy Q. Su et al.

25MB 50MB 100MB 200MB 400MB
Message Size

0

5

10

15

C
P
U
Ti
m
e
/1

03
s

Networking

App. logic

Figure 2: CPU usage of MPI_Allreduce application.

for each pair. Thus 32GB memory has to be set aside for 16 pairs
of containers no matter how many active flows there actually are
(more in §5.1). Even worse, communication may occur between any
two containers: For the 32-container case, 992 GB may be necessary
in the worst case.

Therefore, copying is necessary in a public cloud in order to
guarantee isolation and avoid memory overhead. FreeFlow [61, 80],
which also targets public clouds, is an example that corroborates
this premise. In FreeFlow, each container has isolated memory re-
gions, and shares them with a software router on the hypervisor.
Although this removes overlay processing at the container’s vNIC,
the overheads of copying and going through the network stack
remain for intra-host traffic as data is always processed by the host
network stack. Note that FreeFlow’s software router only under-
takes the virtual networking and container memory management
(Sec. 3.3 in [61]). This suggests the need for a hardware solution
that offloads memory copy.

2.4 Why Not Commodity RDMA?
RDMA offloads the entire network stack onto the hardware RNIC,
thus achieving high throughput and low latency without host CPU
overhead. It has been shown that using it in virtualized clouds
does not incur much performance penalty [51, 61]. In practice, the
reliable connection (RC) transport mode is commonly used since it
supports the more efficient one-sided operations with reliability.

In RC transport mode, commodity RNICs cache most connection
states in the on-board SRAM for performance, including mem-
ory translation tables (MTTs), memory protection tables (MPTs),
working queue elements (WQEs), and queue pair (QP) states. Each
connection needs ∼375B for QP states alone, while the expensive
on-board cache is only a few megabytes [56, 78]. Hence commod-
ity RNICs suffer from poor connection scalability as a result of
cache contention, a phenomenon widely reported in the community
[43, 45, 56–59, 77, 78] based on Mellanox ConnectX-3 or ConnectX-
4 RNICs. The same result is also observed in our experiment, e.g.,
the RDMA WRITE throughput at 64 B and 1KB drops by 51.97%
and 80.38% for 400 connections on a Mellanox ConnectX-3 40GbE
RNIC (MT27520). Newer RNICs with larger on-board caches might
suffer less from this problem. Yet it is still not clear whether scala-
bility is satisfactory in the intra-host scenario. Thus, we conduct
a benchmark on a Mellanox ConnectX-5 25GbE RNIC (MT27800)
and a Mellanox ConnectX-6 100GbE RNIC (MT28908) using the
same server as in §2.2. We exploit perftest [32] and rdma_bench
[58] to measure the throughput of 10-second flows with 1 KB-sized
packets in packets-per-second (pps).

64 128 256 512 1024 2048 4096
of connections

5

10

15

Th
ro
ug

hp
ut

(M
pp

s)

3.62

11.90

1.88

8.67

ConnectX-5

ConnectX-6

Figure 3: Total throughput (packets-per-second, pps) of intra-host RDMA
READ when the number of concurrent connections grows on Mellanox
ConnectX-5 25Gbps and ConnectX-6 100Gbps RNICs.

Figure 3 shows how the total throughput of RDMA READ varies
as the connection number scales.We observe that READ throughput
at 4096 connections of ConnectX-5 and ConnectX-6 declines by
48.07% and 27.14%, respectively. This proves that new RNICs also
has the scalability issues. When the number concurrent connections
grows, the RNIC has to frequently DMA the connection states from
the host memory which is much more expensive than reading from
the on-board cache.

To mitigate RDMA’s scalability issue, prior studies [43, 45, 56,
57, 77] strive to reduce the states offloaded to RNIC. However,
they do not eliminate the limitation of the on-board resources. In
addition, these solutions inherit the message-based semantics of
RDMA, which confine the benefits for stream-based applications
[17, 40, 49, 68, 75]. For example, the sending data stream has to
be split into discrete RDMA messages, and applications have to
perform other non-trivial operations, such as negotiating message
sizes and initiating work queue requests.

2.5 Our Design Choice
We choose to only offload the performance-critical part of the data
path onto hardware but rely on software to manage the connection
states which are stored entirely in host DRAM. This eliminates
the contention for hardware resources for the control information,
while preserving the efficiency advantage of hardware offloading.
The cost is prolonged latency of state management and other con-
trol path operations that happen in the hypervisor now, which is
negligible for bulky transfers as will be shown in our evaluation.

As explained in §2.1, reliability and congestion issues would not
happen in the intra-host case, so we choose to provide a simple
communication service without these guarantees. This is more effi-
cient in hardware resources than full-stack offloads like TOE [18]
and RDMA. Specifically, we use hardware to DMA application data
in hugepages and copy it to the receiving side, effectively build-
ing a communication pipe between containers without any CPU
overhead. Our system is therefore coined PipeDevice. Because the
only functionality on hardware is DMA copy, PipeDevice can be
implemented upon various hardware, such as FPGA, Intel DSA
[21], RNICs and SmartNICs. We currently choose FPGA for PipeDe-
vice as it has already been massively deployed in data centers to
accelerate networking workloads[42, 48]; using it for container
communication does not incur extra hardware costs. We leave the
implementation on other hardware for future work, and we do not
focus on the raw performance given the hardware heterogeneity.

PipeDevice: A Hardware-Software Co-Design Approach to Intra-Host Container Communication CoNEXT ’22, December 6–9, 2022, Roma, Italy

3 DESIGN
We now present the design details of PipeDevice.

3.1 Highlights and Overview
The central idea of PipeDevice is to offload memory copy to hard-
ware and bypass the intricate TCP/IP stack processing. For this,
it maintains an in-kernel hugepage region.1 that can be accessed
by FPGA’s DMA engine and mmaps (part of) this memory to each
socket in user-space for application data. Specifically, PipeDevice
imposes two fundamental design questions:

(1) How to make existing applications benefit from PipeDevice
without much porting effort and make it easy to develop
new applications?

(2) How to achieve efficient interaction between software and
the underlying hardware?

In answering the questions, PipeDevice’s design has the follow-
ing highlights.
New APIs for communication and memory. One of our goals
is to minimize the porting effort for applications so that they
can easily benefit from PipeDevice. It is ideal to directly support
the BSD socket that has the stream-based semantics, but its APIs
(e.g., recv()) do not seamlessly support the zero-copy semantic
[16, 36, 39].2 New communication APIs are needed to enable zero-
copy especially for receive since otherwise the receive call would
use application’s own buffer which PipeDevice cannot access. Pi-
peDevice therefore chooses to provide a set of socket-like APIs. It
also provides new APIs to create and free buffers in the hugepages
for applications.
Memory management. Memory isolation and efficiency are re-
quired to make PipeDevice practical in public clouds. Thus PipeDe-
vice organizes the hugepages as a ring buffer pool and allocates to
each socket dedicated ring buffers for both send and recv. These
ring buffers are dynamically allocated and reclaimed for efficiency
and scalability.
Decoupled forwarding plane. Scalability is one of the primary
goals in PipeDevice. As explained in §2, saving connection states
in hardware with limited resources constrains scalability. This is
particularly relevant in our case as the same FPGA card may be
simultaneously used to accelerate other workloads in the cloud [48].
Thus, PipeDevice adopts a decoupled design: the connection states,
including the socket ring buffer states, are maintained entirely in
the host kernel by a driver. The host kernel interacts with FPGA
using sets of per-core command queues that are also maintained in
host memory, and FPGA only keeps the states (pointers) of these
queues, which is scalable to hundreds of cores. This reflects our
hardware-software co-design philosophy that works with simple
hardware.
Kernel-based design. Containers follow a shared-kernel para-
digm where the kernel isolates resources for different containers.

1PipeDevice uses hugepages because they provide memory with visible physical
addresses which can be directly used by DMA engines and managed by PipeDevice.
Without hugepages, the frequent transition from virtual and physical addresses will
introduce high kernel overhead.
2Zero-copy TCP receive is now supported in Linux kernel and exposed with the
mmap() API for programming, but it breaks the socket recv() semantic and needs
much porting effort for socket-based applications[36].

Application Buf 0

comm mem

PD Driver

Conn mgmtHW
interaction Buf mgmt

Hugepage

Memory

OS

FPGA

Buf n...

PD Lib

SBTs
RBTs

SBTs
RBTs

Connection states

PD Stack

APIs

Data path
Control path

syscall

CQ SQ DMA

mmap

H
W

K
er

ne
l

C
on

ta
in

er

Figure 4: PipeDevice system architecture.

This entails that container communication follows the same para-
digm for isolation. Therefore, PipeDevice chooses a kernel-based
design although it sacrifices possible latency benefits of hardware
offloading that is in essence not crucial for bulky transfers.
Design overview. Figure 4 depicts the architecture of PipeDevice.
A PD Lib runs inside each container to serve the applications. It
handles all communication requests and exposes to applications
the send and receive buffers that are mapped from the hugepages
(§3.2). The API calls are directed to PD Driver which is a kernel
module. PD Driver manages all the connection state information
among other things. It allocates per-socket send and receive buffers
on the hugepages and tracks their states using a send buffer table
(SBT) and a receive buffer table (RBT) (§3.3 and §3.4). It interacts
with PD Stack on FPGA by translating the API calls into fixed-sized
commands and dispatches them to FPGA through a set of per-core
command queues, each consisting of a submission queue (SQ) and a
completion queue (CQ). Then PD Stack performs data transmission
correspondingly (§3.5).

3.2 Communication and Memory APIs
We first introduce the new APIs provided by PD Lib.
Communication APIs. PipeDevice exposes zero-copy BSD-like
socket interfaces that largely follow the non-blocking semantics —
it has a corresponding function call for each socket function (e.g.,
socket() becomes pd_socket()). Table 3 details a partial list of
the APIs. Unlike the BSD counterpart, PipeDevice supports zero-
copy in both send and receive. Specifically, pd_send() directly uses
the mmaped buffers from the hugepages; and pd_recv() simply
returns a reference (pointer) to the socket’s receive buffer (man-
aged by PD Driver) which holds new data. To avoid buffer overlaps,
PipeDevice introduces pd_recv_done() and pd_buf_refresh()
for checking buffer states: After the application consumes the data,
it calls pd_recv_done() to release the slots in the receive buffer
(see §3.5). Similarly, pd_buf_refresh() checks if the send buffer
is reusable before the application overwrites and sends it. The over-
heads of pd_recv_done() and pd_buf_refresh() are small since
syscall is not the bottleneck for bulky transfers. These overheads
can also be mitigated by batching, e.g., multiple send buffers can be
checked simultaneously by one pd_buf_refresh() call.

PipeDevice also provides an epoll-like event mechanism with-
out anymodifications to its event handling logic. pd_epoll_wait()

CoNEXT ’22, December 6–9, 2022, Roma, Italy Q. Su et al.

and pd_epoll_ctl() are used for fetching and controlling the
events (e.g., PD_EPOLLIN).
Memory API. PD Lib provides pd_malloc() and pd_free() for
applications to dynamically create and release buffers in the
hugepages.

Listing 1 presents an example PipeDevice program with the new
APIs. Note that care should be given to the zero-copy semantics of
receive in PipeDevice when writing applications. PipeDevice also
supports pd_setsockopt() and pd_getsockopt() for configuring
socket parameters.
1 /* Server */

2 sid = pd_socket(AF_INET , SOCK_STREAM , PROTOCOL);

3 ret = pd_bind(sid , &serv_addr , sizeof(serv_addr));

4 ret = pd_listen(sid , BACKLOG);

5 acc_sid = pd_accept(sid , &cli_addr , &addr_len);

6 recv_buf = NULL;

7 ret = pd_recv(acc_sid , DATA_LEN , &recv_buf);

8 ret = pd_recv_done(acc_sid , DATA_LEN);

9 pd_close(acc_sid);

10 pd_close(sid);

11

12 /* Client */

13 sid = pd_socket(AF_INET , SOCK_STREAM , PROTOCOL);

14 ret = pd_connect(sid , &serv_addr , sizeof(serv_addr

));

15 send_buf = pd_malloc(DATA_LEN);

16 ret = pd_buf_refresh(sid , PTRS , PTRLEN);

17 ret = pd_send(sid , send_buf , DATA_LEN);

18

19 pd_free(send_buf);

20 pd_close(sid);

Listing 1: An example PipeDevice application. The logic is the samewith non-
blocking BSD sockets.

3.3 Memory Management
PD Driver in the kernel is in charge of managing memory for
applications in order to achieve memory isolation.
Per-socket lock-free ring buffers. PD Driver maintains the
hugepages which can be accessed by PD Stack through the DMA
bus. The hugepages are organized as a ring buffer pool, and PD
Driver allocates per-socket ring buffers to avoid locking overhead.
Upon receiving the pd_socket() call, PD Driver applies for a send
and a receive ring buffer from the pool. It also initializes a send
buffer table (SBT) and a receive buffer table (RBT) to track the buffer
usage. The subsequent pd_malloc() calls trigger PD Driver to al-
locate memory on the send ring buffer according to SBT. Figure 5
depicts a send ring buffer and its SBT.

In addition, all the socket buffer states for sender and receiver are
maintained by PD Driver. This ensures streamlined data transfers
and zero state synchronization overhead. For example, when a
pd_send() is called, it is able to directly find a free slot on the
destination’s receive buffer to send to based on the receiver’s RBT.

3.4 Connection Management
This section describes the connection establishment and teardown
processes undertaken by PD Driver.
Connection establishment. PD Driver runs a kernel thread
to maintain a connection table that contains the socket struc-
tures of endpoints and corresponding connection states. For each
pd_socket() call, PD Driver allocates a socket structure (pointers

SBT
pointer size total
ptr1 3 3
ptr2 2 5
ptr3 3 8
ptr4 1 9

head

tail

Figure 5: A send ring buffer and its SBT with four allocated blocks. Once a
new block is applied for, a new entry is inserted to the SBT: pointer denotes
the header pointer of a block, size is the block size, and totalmeans the total
size of the used blocks in the ring buffer.

1B 8B 8B 2B 2B 2B 1B 2B 6B

req
type

src
addr

dst
addr

data
len cid conn

id
table
id

entry
seq rsved

Figure 6: The structure of a command queue entry. Here req type denotes the
request type, e.g., PD_GENERAL_SEND; src addr and dst addr are the source data
buffer address and the destination address, and the data buffer length is data
len; cid is the local container id at the host; conn id is the id of a connection
between two endpoints, which is used for PD Driver to locate the connection
so that it can get the buffer state tables of the connected endpoints; table id
indexes either the SBT or RBT, and entry seq denotes a certain entry index
of the SBT/RBT; rsved is for future extension.

to the buffers and SBT/RBT), sets the socket state to ACTIVE, and
returns a distinct socket ID sid. As shown in Listing 1, a server ap-
plication invokes pd_bind() after socket creation to bind the socket
structure to an IP address and port, and the binding is maintained in
PD Driver. When the server application is ready to accept connect
requests, it calls pd_listen(); PD Driver changes the socket state
to LISTEN and establishes a backlog queue which maintains a list
of connect requests from clients. Once a client application invokes
pd_connect() with the correct server address and port, PD Driver
checks the LISTEN state and enqueues the request into the backlog
of the socket.

Every time the server application calls pd_accept(), PD Driver
dequeues a connect request from the backlog and creates a new
socket structure for it. Then PD Driver inserts a new entry to the
connection tablewith the socket structures, sets the connection state
to CONNECTED, and returns the socket ID of the new socket to the
server application.
Connection teardown. When pd_close() is called on a socket,
PD Driver releases both its own and peer’s socket structures spec-
ified in the connection table, recycles their sids, and deletes the
corresponding connection table entry.

3.5 Data Transmission
On the FPGA, PD Stack undertakes data forwarding as instructed
by commands from PD Driver.
Per-core command queues. PD Driver interacts with PD Stack
in FPGA using per-core command queues. Though it is straight-
forward to establish per-connection or per-application command
queues, the number of queues needed is not determinable compared
to the per-core design because of the uncertain number of applica-
tions or connections. A shim layer is also required to translate the
per-application or per-connection queue entries into the underlying
hardware queues which are always based on cores. In addition to
the inevitable locking overhead, the shim layer also needs to handle

PipeDevice: A Hardware-Software Co-Design Approach to Intra-Host Container Communication CoNEXT ’22, December 6–9, 2022, Roma, Italy

Function Parameters Description
pd_init() chardev, sqthresh, cqthresh Initialize PipeDevice, setup the batch sizes for FPGA to update SQ and CQ tails.
pd_release() Release PipeDevice.
pd_socket() domain, type, protocol Create an endpoint for communication.
pd_bind() sid, pd_sock_addr, addrlen Bind a name to a PipeDevice socket.
pd_listen() sid, backlog Listen for connections on a PipeDevice socket.
pd_accept() sid, pd_sock_addr, addrlen Accept a connection on a PipeDevice socket.
pd_connect() sid, pd_sock_addr, addrlen Initialize a connection on a PipeDevice socket.
pd_send() sid, sendbuf, buflen Send a message on a PipeDevice socket.
pd_buf_refresh() sid, ptrs, ptrlen Check if the send buffers are reusable and return their pointers.
pd_recv() sid, buflen, recvbuf Receive data from sender and prepare the receive buffer.
pd_recv_done() sid, buflen Release the receive buffer (Check recv status).
pd_close() sid Close the PipeDevice socket.
pd_malloc() size Allocate a memory buffer with given size.
pd_free() buf Free the memory buffer.

Table 3: A partial list of PipeDevice APIs. PipeDevice also have pd_getsockopt and pd_setsockopt. chardev is the FPGA device, sqthresh and cqthresh are the
depths of SQ and CQ, respectively; sid is PipeDevice socket id; pd_sock_addr is a structure that contains the IP address and port; addrlen denotes the length of
pd_sock_addr; backlog is the queue depth of the backlog queue; ptrs is the pointer list of the sender buffers to be checked, and ptrlen denotes the number of
checked send buffers.

possible head-of-line blocking and out-of-order execution on the
hardware queues for co-located connections or applications be-
cause a connection would use multiple hardware queues. Therefore,
PD Driver chooses to use lockless per-core command queues.

Specifically, PD Driver creates a submission queue (SQ) and a
completion queue (CQ) in the hugepages for each CPU core, so that
multi-core containers do not have locking overhead when accessing
the command queues. The queues contain entries of a fixed size
of 32 bytes. Figure 6 shows the structure of a queue entry. Note
that the cid, conn id, table id and entry seq are only used by PD
Driver for CQ processing, and they are off the hardware datapath.
To access the entries, PD Stack maintains the queue states (e.g., tail
pointer) in FPGA. This is lightweight and makes PD Stack scalable
to hundreds of command queues as the states consume a few MB
of on-board memory.

Upon receiving an API call from the application, PD Driver trans-
lates the request into a new queue entry with the necessary infor-
mation (e.g. destination address in the receive buffer for pd_send())
and inserts it to the SQ. PD Stack on FPGA polls each SQ, parses the
new entry, and executes the command (e.g., copies the data to the
specified destination address by PD Driver for pd_send()). Then
it inserts a new entry into the CQ and notifies PD Driver using an
interrupt. PD Driver checks the CQ for completion notifications
and performs necessary house-cleaning, such as releasing memory
on the send buffer and updating the sender’s SBT for pd_send(). To
improve the interaction efficiency, batching is used when PD Driver
and PD Stack fetch/insert entries from/to the command queues.
Data transmission. Figure 7 illustrates the data transmission pro-
cess between client container C0 and server C1. The server (1) runs
pd_epoll_wait() on socket S1, and PD Lib creates an epoll request
to check if there is any ready data to receive (PD_EPOLLIN event).
If not, pd_epoll_wait() is suspended. At C0, when the client ap-
plication invokes a pd_send() call, (2) PD Lib parses pd_send()
and generates a send request to PD Driver. PD Driver determines
the free slots in S1’s receive buffer according to its RBT, generates
a new queue entry E with the destination memory address, and
enqueues E to C0’s SQ. (3) PD Stack obtains E via the SQ. Then it
copies data from S0’s send buffer to S1’s receive buffer according

pd_recv()pd_epoll_wait()pd_send()
pd_recv_done()C0 C1

PD Lib

PD Stack

SQ

PD Lib

5

mmapControl Data RBT SBT

6

1
2

CQ

PD Driver
2

3

3

4 4

5

7
6

Kernel

Figure 7: An example of the data transmission process from C0 to C1. The
double-ended data arrows show that PD Driver maintains RBTs, SBTs, and
data buffers. The ring buffers in C0’s and C1’s contexts are socket S0’s send
buffer and S1’s receive buffer, respectively. Only relevant buffers and queues
are shown here.

to the addresses carried in E. (4) PD Stack updates E’s req type to
PD_GENERAL_COMPLETED and pushes E into C0’s CQ, and raises an
interrupt to PD Driver. (5) In the interrupt context, PD Driver parses
E from the CQ, releases memory in S0’s send buffer, and updates
S0’s SBT and S1’s RBT. It also generates a PD_EPOLLIN event for
S1, wakes up pd_epoll_wait() and copies the event to PD Lib
to return to the server application. (6) Now the data is ready for
the server application, which then calls pd_recv(). PD Lib returns
the data chunk pointer obtained from S1’s RBT. (7) After the data
is consumed by the server and pd_recv_done() is invoked, PD
Driver receives the request from PD Lib, releases the corresponding
memory in S1’s receive buffer, and updates S1’s RBT.

4 IMPLEMENTATION
We implement a prototype of PipeDevice in Linux kernel 4.9 with
6000+ LoC. PD Lib is implemented as a dynamic shared library, and

CoNEXT ’22, December 6–9, 2022, Roma, Italy Q. Su et al.

SQ state CQ state

2 9

Config

PD State Registers

Data
Buffer

PD Controller

DMA Engine

PD
Stack

CPU

MMIO
FPGA
Host

Ptr Calculator

sq_tail

sq_ptr

cq_tail

cq_ptr

Data SQ CQ

Hugepages

interrupt

DMA ops

cmd ops

data ops

1

1

5
9

2 9

3 46

7

8 6

8 10

Figure 8: The FPGA PD Stack implementation. cmd ops and data ops are for
command queue and payload operations, respectively. DMA ops includes DMA
write and read. PD Stack sets three registers to maintain the command queue
states (e.g., pointers) and the FPGA configurations. The data queues in host
hugepages represent send ring buffers and receive ring buffers.

Resource PD DMA PD State Ptr Data TotalController Engine Registers Controller Buffer

ALM 4285.0 1954.2 614.2 94.2 0 6947.6
BRAM 21 0 1 0 104 180

Table 4: PipeDevice’s resource usage on FPGA.

PD Driver as a kernel module. We use 4GB hugepages with 2MB
pages, and each ring buffer is 4MB. SQ and CQ are FIFO queues
with a depth of 1K.
PD Stack. We implement PD Stack on Intel Arria 10 FPGA [19]
(2×8 PCIe gen3 lanes) with 2500+ lines of Verilog. PD Stack DMAs
data in the host hugepages and performs up to 4KB reads and
writes. Thus data is split into 4 KB chunks in PD Driver. PD Stack
exploits the FPGA’s parallelism by running each component on
an independent FPGA circuit and organizing the components in
pipelines. In addition, PD Stack processes the elements of a com-
mand queue in a FIFO order, and scans all command queues in a
round-robin fasion. Figure 8 shows the data transmission process
on PD stack, including four main steps below which run in parallel.
Read SQ: (1) The host CPU writes a command queue entry E to the
SQ, then updates the corresponding SQ and CQ states (e.g., sq_ptr)
through MMIO; (2) Ptr Calculator computes the access offset of SQ
and passes it to PD Controller; (3) PD Controller generates a DMA
read request for E, then sends it to DMA engine; (4) DMA Engine
reads E from SQ and sends it to PD Controller.
Read payload from send buffer: (5) PD Controller generates a DMA
read request for fetching payload specified in E and sends it to DMA
engine. (6) DMA Engine gets the payload, writes it to Data Buffer,
and notifies PD Controller with a read completion message.
Write payload to receive buffer: (7) PD Controller generates a DMA
write request for payload and delivers it to DMA Engine; (8) DMA
Engine gets the payload fromData Buffer andwrites it to the receive
buffer, then sends a write completion message to PD Controller.
Now the payload is transmitted.
Write CQ: (9) PD Controller updates E’s req type to
PD_GENERAL_COMPLETED, gets CQ’s free slots through Ptr Calcula-
tor similar to (2), and generates a DMA write request; (10) DMA

10 20 30 40 50 60 70 80
Throughput (Gbps)

0

2

4

6

To
ta
lC

P
U
us
ag
e

Baseline

FreeFlow TCP

Cilium

io uring

PipeDevice

Figure 9: Total CPU usage for throughput targets (Not count the core for
FreeFlow router).

Engine writes the updated E to CQ and generates a write completion
message to PD Controller.

After above steps, PD Controller creates a new request and sends
it to DMA Engine so that an MSI interrupt is invoked by DMA
Engine to notify the CPU for kernel processing.
FPGA resource. We quantify the FPGA on-board resource us-
age, including the use of ALM (Adaptive Logic Module), BRAM
(Block RAM), and DSP (Digital Signal Processing) blocks. Specifi-
cally, PD Stack uses a very small fraction of FPGA resources: only
6947.6 (1.63%) ALMs, 180 (6.63%) BRAMs, and no DSP block. Table 4
presents the detailed on-board resource usage. Note that PD State
Registers are lightweight as they only maintain 2 pointers for each
command queue (e.g., sq_tail and sq_ptr for a SQ in Figure 8),
making PD Stack scalable to hundreds of per-core command queues
using only 1 BRAM (tens of MB).
How to implement PipeDevice over other hardware? PipeDe-
vice’s PD Stack can be implemented on various hardware with
DMA engines, including SmartNIC [27], Intel IOAT [13], etc. Sim-
ilar to the FPGA implementation, the on-board resources are not
the bottleneck. We provide some tips to enforce PD Stack on the
SoC SmartNIC(e.g.,Mellanox BlueField-2 DPU [27]) and the Intel
IOAT [13, 22] (e.g., Intel C610 series chipset [20]).
SoC SmartNIC. Unlike FPGA, SoC SmartNIC has multiple on-board
CPU cores (e.g., BlueField-2 DPU has 8 ARMv8 cores). Thus, Ptr
Calculator, PD Controller, and DMA engine [28] may run as pro-
cesses on on-board CPU cores. SQ/CQ states and the data buffer are
allocated from the on-board memory, which is a constant overhead.
Intel IOAT. Intel IOAT is integrated into the host CPU chipset and
driven by the host CPU cores. PD Stack can be implemented by
extending the IOAT copy interface with the command queue pro-
cessing. Here the processes run on host CPU cores, and the memory
is allocated from host memory.

5 EVALUATION
We now present the evaluation of PipeDevice by answering the
following questions.

(1) How much resource saving does PipeDevice offer? (§5.1)
(2) Does PipeDevice provide high throughput and good connec-

tion scalability? (§5.2 and §5.3)
(3) What about other microbenmarks, such as latency and fair-

ness? (§5.4)
(4) Is it easy to port applications to PipeDevice, and how much

performance gain can be achieved at the application level?
(§5.5)

PipeDevice: A Hardware-Software Co-Design Approach to Intra-Host Container Communication CoNEXT ’22, December 6–9, 2022, Roma, Italy

64 25
6 1K 4K 16

K
64
K

25
6K 1M

Message size (B)

0

20

40

60

80

100

120

Th
ro
ug

hp
ut

(G
bp

s)

Raw IOAT

PipeDevice-IOAT

PD Stack (FPGA)

PipeDevice-FPGA

Figure 10: Comparison of PipeDevice raw throughput with varying message
sizes.

64 12
8

25
6

51
2 1K 4K 16

K
64
K 1M

Message size (B)

0

20

40

60

80

Th
ro
ug

hp
ut

(G
bp

s)

Baseline

FreeFlow TCP

Cilium

io uring

PipeDevice

Figure 11: The throughput comparison with varing message sizes.

Methodology. The server we use has an Intel Xeon E5-2698 v3
CPU with 2 NUMA nodes each with 16 cores, 256GB DRAM, an
Intel Arria 10 FPGA, a Mellanox ConnectX-5 25GbE NIC, and a
Mellanox ConnectX-6 100GbE NIC. We use Ubuntu 16.04 with
Linux kernel 4.9. Hyper-threading and turbo boost are disabled.

We use Docker to create containers that are connected to a Linux
bridge and uses the default kernel TCP stack. This is the baseline
of our evaluation, denoted as Baseline. We compare PipeDevice
against Intel IOAT [13] which is a memory copy engine on In-
tel CPU chipset, and software approaches including Cilium [6],
io_uring [24], and state-of-the-art FreeFlow [61] which has both
RDMA- and TCP-based implementations [14], denoted as FreeFlow
RDMA and FreeFlow TCP, respectively. Wemainly look at FreeFlow
TCP considering that FreeFlow RDMA inherits RDMA’s scalability
issue in public clouds. We implement PipeDevice with IOAT by
emulating the key logic of PD Lib and PD Driver on it, denoted
as PipeDevice-IOAT. The performance of raw IOAT is obtained by
Intel SPDK [23]. Unless otherwise stated, PipeDevice denotes its
FPGA implementation, and uses 64 KB as the message size for DMA
operations; flows in all schemes last 60 seconds to represent bulky
transfers. Throughput is measured using iperf and perftest, and
CPU usage is measured by sysstat. The results are averaged over
five runs. To avoid startup interference, we run enough warm-up
rounds before collecting the results.

5.1 Resource Savings
We look at PipeDevice’s benefits on resource efficiency, including
CPU and memory usage.
CPU Usage.We quantify PipeDevice’s CPU savings over Baseline,
Cilium, io_uring, and FreeFlow TCP. We obtain the CPU usage as

128 256 512 1024 2048 4096
of connections

0.00

0.25

0.50

0.75

1.00

Th
ro
ug

hp
ut

no
rm

.

ConnectX-5

ConnectX-6

PipeDevice

Figure 12: Connection scalability. Throughput is normalized by that of 128
connections.

the total number of consumed CPU cores for both the sender and
receiver. Note that FreeFlow uses an extra core dedicated for the
centralized controller (FreeFlow router). Baseline, Cilium, io_uring
and FreeFlow TCP use 16 TCP streams to saturate the cores, while
PipeDevice uses a single stream.3

Figure 9 presents the CPU usage with varying throughput. We do
not include the extra core used by FreeFlow; thus its result should
be taken as an optimistic underestimation. We observe that PipeDe-
vice significantly reduces the CPU usage while achieving the same
throughput as other schemes. In achieving 80Gbps, it saves 3.93,
1.56, 1.09 and 2.28 cores compared to Baseline, FreeFlow TCP, Cil-
ium and io_uring. This confirms PipeDevice’s benefit in removing
the overheads of memory copy and TCP/IP stack processing. Note
that since Cilium bypasses the kernel TCP/IP stack and io_uring
reduces the syscall overhead, they also save CPU over Baseline.
We expect PipeDevice to achieve greater CPU saving with newer
hardware (more in §6).
Memory Consumption. PipeDevice dynamically manages mem-
ory for containers (§3.3). On our server PipeDevice can easily sup-
port 32 single-core containers using 4GB hugepages in total, and
each container has 512 active sockets (each socket ring buffer is
4MB). On the contrary, as explained in §2.3, 32 GB memory is nec-
essary for 16 pairs of containers, i.e. 8x the footprint of PipeDevice.

5.2 Throughput
We now show how much throughput PipeDevice can reach by
measuring the send throughput with a pair of 2-core containers,
based on our FPGA implementation and IOAT emulation, denoted
as PipeDevice-FPGA and PipeDevice-IOAT, respectively.

We do not evaluate receive throughput as PipeDevice consumes
little CPU for receive. Figure 10 shows its overall throughput and
the raw throughput delivered by PD Stack and IOAT without in-
teraction with the host. For PipeDevice-FPGA, we observe that
when the message size is small (<4KB), PipeDevice’s throughput
increases as the message size grows, but it is much lower than
PD Stack’s raw throughput. This is because the kernel processing
on CPU cores is the bottleneck for small messages. When mes-
sages are larger than 4KB, PipeDevice’s throughput saturates at
∼85Gbps and is very close to PD Stack’s throughput. Now PD Stack
becomes the bottleneck: since it supports up to 4KB operations
(recall §4), its raw throughput saturates with 4 KB messages. This
demonstrates that our co-design approach with PD Driver and PD
3More steams deliver the same total send throughput in PipeDevice.

CoNEXT ’22, December 6–9, 2022, Roma, Italy Q. Su et al.

Average Median 75%ile 90%ile 99%ile

Baseline 12.12 12.71 12.87 14.08 16.46
FreeFlow TCP 14.25 14.37 15.06 15.89 18.19
FreeFlow RDMA 1.65 1.74 1.75 1.77 1.82
Cilium 7.49 5.66 10.06 10.26 11.14
io_uring 3.07 2.44 2.47 4.10 20.98
Raw IOAT 0.03 0.02 0.02 0.02 1.14
PipeDevice-IOAT 0.96 0.94 0.95 1.02 1.26
PipeDevice-FPGA 8.27 7.39 8.11 13.82 23.13

Table 5: Comparison of latency (us) distribution at 64B.

Average Median 75%le 90%ile 99%ile

Baseline 16.82 16.77 16.99 17.35 22.19
FreeFlow TCP 18.88 19.56 20.32 20.91 24.29
FreeFlow RDMA 3.13 3.21 3.36 3.42 10.13
Cilium 9.15 7.29 13.09 13.24 13.75
io_uring 12.06 10.02 14.41 19.31 38.47
Raw IOAT 0.19 0.02 0.02 0.95 1.54
PipeDevice-IOAT 3.42 1.06 3.60 9.85 22.13
PipeDevice-FPGA 9.85 9.54 9.78 11.68 18.84

Table 6: Comparison of latency (us) distribution at 8KB.

Lib does not incur much performance loss for bulky data transfer.
Further, considering that 2×8 PCIe lanes promise ∼110Gbps theo-
retical bandwidth in gen3 [72], there is room to optimize the PD
Stack implementation on FPGA for better performance (more in
§6).

The throughput of raw IOAT and PipeDevice-IOAT starts to drop
when message size is larger than 16 KB,4 and PipeDevice-IOAT may
achieve ∼62Gbps at 16 KB. We can also see PipeDevice’s software
overhead by comparing PipeDevice-IOAT and raw IOAT. Note that
PipeDevice is also able to split the messages into 16 KB chunks to
achieve ∼62Gbps for larger messages (recall §4). In addition, Pi-
peDevice may achieve better throughput by implementing PD Stack
on new hardware with better DMA bandwidth, e.g., FPGAs with
PCIe gen4/gen5. In the following, we mainly evaluate PipeDevice
by its FPGA implementation.

We also compare PipeDevice’s throughput against the soft-
ware approaches by measuring the send throughput on a single-
core sender container. Observe from Figure 11 that PipeDevice
achieves better throughput than Baseline, FreeFlow TCP, Cilium
and io_uring. When the message size is small, PipeDevice’s bene-
fits come from its simpler transport. As the message size becomes
larger, memory copy between kernel and user spaces becomes the
bottleneck and is effectively mitigated by PipeDevice via hardware
offloading.

5.3 Connection Scalability
We run a pair of 16-core containers andmeasure the overall through-
put when the number of connections scales. The DMAmessage size
is 1 KB. We compare it to the READ throughput of the Mellanox
ConnectX-5 25GbE RNIC and ConnectX-6 100GbE RNICs, and nor-
malize the result by that of 128 connections. Figure 12 shows the
normalized results. We can see that as the number of connections
4The reason for the throughput drop may be that IOAT splits messages into chunks
with a fixed size and the increasing per-chunk hardware processing becomes the
bottleneck with large message sizes.

2 4 6 8 10 12 14 16
of connections/container pairs

0.0

0.2

0.4

0.6

St
dd

ev
(G

bp
s)

Container Connection

Figure 13: Stddev of throughput with varying numbers of container pairs or
connections.

increases to 4096, PipeDevice’s throughput remains stable at peak
while RDMA’s decreases sharply due to cache contention on RNIC
as discussed in §2.4.

5.4 Latency and Fairness
Latency.We examine PipeDevice’s packet processing latency using
the completion time of sending very short messages based on its
FPGA implementation and IOAT emulation, denoted as PipeDevice-
FPGA and PipeDevice-IOAT, respectively. We present various sta-
tistics of latency over 5,000 runs. Tables 5 and 6 show the latency
statistics for 64 B and 8 KB messages, respectively. We observe that
PipeDevice-FPGA and PipeDevice-IOAT achieves lower latency
than Baseline and FreeFlow TCP in general. This is because Pi-
peDevice provides a simpler transport than TCP. Additionally, the
latencies of PipeDevice-FPGA and PipeDevice-IOAT increases less
when the message size increases. This is because copy overhead
between user and kernel spaces in Baseline and FreeFlow TCP
is non-negligible as message size grows. At 64B, we can see that
PipeDevice-FPGA is worse than Cilium and io_uring, the reason
is that PipeDevice-FPGA introduces extra delay on PCIe trans-
mission and kernel processing (e.g., connection management). At
8KB, io_using has higher latency than PipeDevice because the
latency on memory copy starts to becomes the bottleneck. In addi-
tion, PipeDevice-IOAT has lower latencies that PipeDevice-FPGA.
This also confirms the incurred delay on PCIe transmission in
PipeDevice-FPGA while IOAT is integrated on the CPU chipset.
PipeDevice has higher latency than RDMA which is not surpris-
ing. PipeDevice relies on the hypervisor kernel to carry out con-
trol actions (memory management, connection state management)
and thus bears the context switching and syscall overheads (recall
§3.1), while RDMA offloads the entire stack to hardware and enjoys
hardware-level latency. Note that the latency is a small price we
consciously choose to pay for a more practical design for bulky
transfer.
Fairness.We evaluate PipeDevice’s fairness in terms of per-core
bandwidth sharing. Specifically, we run 16 pairs of single-core con-
tainers and measure the bandwidth of each pair. We also establish
two 16-core containers, vary the number of connections between
them, and measure the bandwidth obtained by each connection.
These two measurements essentially set up one connection for
each CPU core. We calculate the standard deviation for the shared
throughput and show the results in Figure 13. Observe that the stan-
dard deviation for PipeDevice stands at a low value (< 0.5Gbps).

PipeDevice: A Hardware-Software Co-Design Approach to Intra-Host Container Communication CoNEXT ’22, December 6–9, 2022, Roma, Italy

2 4 8
of containers

0

5

10

15

Th
ro
ug

hp
ut
(G

bp
s)

baidu-allreduce

Open MPI

Cilium

io uring

PipeDevice

Figure 14: Comparison of allreduce’s end-to-end throughput.

64
B

12
8B

25
6B

51
2B 1K

B
1.5
KB

Packet Size (message size for PipeDevice)

0

50

100

150

C
om

pl
et
io
n
Ti
m
e
(m

s)

Baseline

FreeFlow TCP

Cilium

io uring

PipeDevice

Figure 15: Comparison of the completion time of the network service chain.

This is because PipeDevice interacts with FPGA through per-core
command queues, which ensures fair sharing of FPGA’s perfor-
mance across multiple cores.

5.5 Application Usecases
In this section, we quantify the application-level performance gain
of PipeDevice.
Ring allreduce. Allreduce is widely used in distributed training of
deep learning models to aggregate gradients from different workers
[15, 30]. We implement a ring allreduce library using PipeDevice by
porting baidu-allreduce [4]. Specifically, we replace the MPI calls
(e.g., MPI_Send) in baidu-allreduce with PipeDevice’s APIs. Out
of ∼650 lines of C++ code, 26 lines are modified and 87 lines are
added to use PipeDevice. Note that the reduce computation is done
on CPU. We also port baidu-allreduce using Cilium and io_uring
for comparison, by adding 199 and modifing 48 lines, respectively,
and also compare to MPI_Allreduce in Open MPI v4.1 [31]. Each
container is assigned one core and works as a rank of allreduce. We
report the end-to-end throughput of processing 200MB data with
1MB message size at each container.

Figure 14 shows the results averaged over 100 runs. PipeDevice
significantly improves the allreduce throughput by ∼2.2×, ∼2.1×,
∼1.9× and ∼2.0× over vanilla baidu-allreduce, Open MPI, Cilium,
and io_uring versions. Considering that communication takes ∼60%
CPU cycles for allreduce (recall §2.2), this proves the performance
benefits by using the saved CPU cycles to accelerate computation.
We also observe that the Cilium and io_uring’s performace gains
are smaller than PipeDevice. This is because they still suffer from
the memory copy overhead at 1MB although Cilium bypasses the
TCP/IP stack processing and io_uring reduces the syscall overhead.

64
B

12
8B

25
6B

51
2B 1K

B
1.5
KB

Packet Size (message size for PipeDevice)

0

1

2

3

4

C
P
U
U
sa
ge

Baseline

FreeFlow TCP

Cilium

io uring

PipeDevice

Figure 16: Comparison of the overall CPU usage of the network service chain.
For each bar, the bottom and top parts show the communication and compu-
tation cpu usage, respectively.

Network service chain. Virtual network functions are increas-
ingly deployed using containers in practice for improved perfor-
mance and efficiency [7, 81], and we use it as another usecase here.
We implement a typical network service chain consisting of a fire-
wall followed by a load balancer to determine the worker node,
and finally a decryption NF to decrypt the request using AES. The
ingress traffic is delivered from a 40GbE NIC. We run 3 single-core
containers for each NF, which sets up two threads, one for data
transmission and the other for NF processing logic. We implement
the baseline chain with 1526 lines of C, and the PipeDevice ver-
sion only needs 82 lines of code change. In addition, we port the
network service chain using Cilium and io_uring with adding 199
and modifing 184 lines, respectively. We measure the completion
time and total CPU usage of servicing 10K requests. The results are
averaged over 100 runs.

Figure 15 presents the completion time with varying message
sizes. When the packet size is smaller than 512B, PipeDevice does
not improve performance much, and shows similar results with
Cilium and io_uring. This is because the bottleneck is NF packet
processing. PipeDevice’s small gain is due to its simpler transport.
However, as packet size increases, the bottleneck shifts to data copy,
and PipeDevice’s gain becomes more salient as it offloads copy to
FPGA. The performance gains of Cilium and io_uring also increases
in this case. Figure 16 shows the CPU usage breakdown. We can
see the largest gain is at 1.5 KB packets for which PipeDevice uses
∼51% less CPU than FreeFlow. FreeFlow TCP achieves comparable
performance to PipeDevice at the cost of an extra core for FreeFlow
router. It consumes 3.37 cores to achieve 97.51ms completion time,
while PipeDevice only takes 2.04 cores to reach 82.42ms (15.57%
reduction).

6 DISCUSSION
This section discusses some immediate concerns one may have
about PipeDevice.
Can PipeDevice support overlay networking? PipeDevice
works with overlay networking which does not critically impact
its design. In case a software overlay router is used, PD Driver can
interact with it to ensure the necessary overlay processing such as
IP address mapping. This certainly adds overheads which are also
unavoidable in the current architecture. In case overlay processing
is offloaded to hardware (e.g., FPGA) as some providers already de-
ployed [48], PipeDevice can integrate with the offloading logic on

CoNEXT ’22, December 6–9, 2022, Roma, Italy Q. Su et al.

FPGA. Essentially, overlay processing focuses on enforcing control
plane policies, which does not impact the data path that PipeDevice
focuses on.
Does PipeDevice support various network policies? The cur-
rent design of PipeDevice can support the access control and rate
limiting policies as all network requests are manipulated in PD
Driver before being forwarded to FPGA. In addition to pure of-
floading, PipeDevice lends itself to implementing a set of network
policies to operators. Access control policies could be parsed and
injected to PD Driver directly, which inspects the metadata in each
request and only processes the authorized flows. Rate limiting poli-
cies could also be enforced by adjusting the enqueueing behaviors
of PD Driver and the polling behaviors of FPGA (with regards to
SQ). Better yet, one could consider integrating PipeDevice with
the overlay processing in FPGA [48] to facilitate the control plane
policy enforcement as discussed before.
Canwe acheive higher throughput?As explained before in §5.2,
PipeDevice currently delivers ∼85Gbps bandwidth as a result of
our implementation overhead and the PCIe limitation of our FPGA.
As PCIe gen4 becomes mature with higher lane bandwidth, soon
we expect to see FPGAs (2 ×8 PCIe gen4 lanes) offering ∼220Gbps
theoretical bandwidth [72] and beyond which is sufficient in public
clouds.
Can PipeDevice be extended to support inter-host network-
ing? Although PipeDevice is designed for intra-host traffic, it can
bring benefits to inter-host container communication as well. For
example, in service mesh, PipeDevice mitigates the communica-
tion overhead between containers and its co-located sidecar proxy
which in turn benefits traffic across different hosts. In addition,
PipeDevice can co-exist with the TCP stack gracefully if one needs
to handle traffic in the wide Internet. This can be done at the appli-
cation level by simply using the corresponding interfaces to invoke
the inter-host stacks (e.g., BSD socket for kernel TCP), or at PipeDe-
vice by having additional logic in PD Lib to check the destination
address and invoke the relevant functions of the inter-host stacks.
Meanwhile, frameworks like NetKernel [73] can also be used to
support concurrent use of multiple network stacks in a virtualized
environment. We leave this as future work.

7 RELATEDWORK
We discuss related work to PipeDevice in this section.
Container networking. Containerization in clouds drives inno-
vations in container networking. Other than [61, 80] which we
discussed in detail throughout this work, there are relatively fewer
efforts. Iron [60] provides strong performance isolation for contain-
ers; Slim [84] and Falcon [63] aim to reduce the overlay processing
overhead; BASTION [71] offers a container-aware communication
sandbox for secure container networking. Cilium [6] supports ker-
nel network stack optimization by eBPF for containers. They do
not consider overheads of bulky transfer in intra-host scenarios.
SR-IOV. SR-IOV compliant hardware [65, 67] efficiently shares
PCIe devices across VMs. The host connects to a physical function
(PF) of the device while each VM connects to a distinct virtual
function (VF) which represents a virtual device. PipeDevice is or-
thogonal to SR-IOV because it removes the overhead of network

stacks SR-IOV does not; while with or without SR-IOV applica-
tions in a VM still need to use the network stack. Thus, SR-IOV
support and its newer scalable design such as Intel’s Scalable VT-d
[1] for the offloading hardware (e.g., FPGA, RNIC) can facilitate
PipeDevice’s deployment inside VMs.
Host network stacks. High-performance network stacks are also
beneficial to container networking, including kernel optimizations
[50, 66, 76, 79] and user-space stacks [12, 34, 41, 52, 54, 69]. These
arts mainly aim to optimize short-message communication and
intra-host communication can do away with complicated stack
processing. Meanwhile, user-space stacks are also not practical to
deploy in public clouds for security concerns, and most packet I/O
engines do not support virtualization across multiple tenants.
Hardware offloading. Our community has also devoted efforts
to hardware-assisted low overhead networking. Other than RDMA
[43, 45, 56–59, 78] we discussed in §2.4, many work offloads vari-
ous network workloads onto so-called SmartNICs, including TCP
connection processing [18], stateful operations of short connec-
tions [70], and SDN policies [48]. Though they do not consider the
data path of long connections in the container context, they do
inspire PipeDevice’s design: offloading greatly helps to reduce the
CPU overhead by moving the expensive components of the current
architecture away from general-purpose CPU.

8 CONCLUSION
This paper presents PipeDevice, a hardware-software co-design
system for low-overhead intra-host container communication. Pi-
peDevice removes the principal overheads of memory copy and
TCP stack for long connections by offloading data copy and trans-
mission to hardware. It achieves high scalability by keeping connec-
tion states entirely in host DRAM and managing them in software
without causing hardware resource contention. We implement Pi-
peDevice on FPGA and conduct extensive testbed experiments. The
results show that PipeDevice can save up to 3.93 cores to deliver
80Gbps throughput compared to kernel TCP. At the application
level, PipeDevice improves the throughput of baidu-allreduce by
∼2.2× over using TCP, and reduces the request completion time
in a typical network service chain by over 15% with 47% less CPU
compared to FreeFlow.

We are considering several directions of future work. First, zero-
copy socket interfaces. We seek to eliminate the semantic gap be-
tween PipeDevice’s zero-copy receive and the BSD receive which
needs to be taken care of by applications now. Second, short connec-
tion optimization. Container networking with short connections is
also a common scenario in data centers as many applications such
as nginx generate latency-sensitive request and response traffic.
A hardware approach may also be exploited here to reduce the
context switching and connection setup overheads of TCP without
RDMA’s scalability issues.

ACKNOWLEDGMENT
We thank the anonymous CoNEXT reviewers and our shepherd
Gianni Antichi for their valuable comments. This work is supported
in part by funding from the Research Grants Council of Hong Kong
(11209520) and from CUHK (4937007, 4937008, 5501329, 5501517),
and a gift fund from Microsoft (6906276).

PipeDevice: A Hardware-Software Co-Design Approach to Intra-Host Container Communication CoNEXT ’22, December 6–9, 2022, Roma, Italy

REFERENCES
[1] Achieving Fast, Scalable I/O for Virtualized Servers. https://www.intel.com/

content/dam/www/public/us/en/documents/white-papers/scalable-i-o-
virtualized-servers-paper.pdf.

[2] Amazon web service. https://aws.amazon.com/.
[3] AMD Zen 4 Epyc CPU. https://www.techradar.com/news/amd-zen-4-epyc-cpu-

could-be-an-epic-128-core-256-thread-monster.
[4] Baidu-allreduce. https://github.com/baidu-research/baidu-allreduce.
[5] bpftrace: High-level tracing language for linux systems. https://bpftrace.org/.
[6] Cilium. https://github.com/cilium/cilium.
[7] Cloud-Native Network Functions. https://www.cisco.com/c/en/us/solutions/

service-provider/industry/cable/cloud-native-network-functions.html.
[8] Container management in 2021: In-depth guide. https://research.aimultiple.com/

container-management/.
[9] containerd: an industry-standard container runtime with an emphasis on sim-

plicity, robustness and portability. https://containerd.io/.
[10] Deep learning containers in Google Cloud. https://cloud.google.com/deep-

learning-containers.
[11] Enable Istio proxy sidecar injection in Oracle cloud native environment. https:

//docs.oracle.com/en/learn/ocne-sidecars/index.html#introduction.
[12] F-Stack: A high performance userspace stack based on FreeBSD 11.0 stable.

http://www.f-stack.org/.
[13] Fast memcpy with SPDK and Intel I/OAT DMA Engine. https:

//www.intel.com/content/www/us/en/developer/articles/technical/fast-
memcpy-using-spdk-and-ioat-dma-engine.html.

[14] FreeFlow TCP. https://github.com/microsoft/Freeflow/tree/tcp.
[15] Gloo. https://github.com/facebookincubator/gloo.
[16] Implement mmap() for zero copy receive. https://lwn.net/Articles/752207/.
[17] Implementing TCP Sockets over RDMA. https://www.openfabrics.org/images/

eventpresos/workshops2014/IBUG/presos/Thursday/PDF/09_Sockets-over-
rdma.pdf.

[18] Information about the TCP chimney offload, receive side scaling, and
network direct memory access features in Windows server 2008.
https://support.microsoft.com/en-us/help/951037/information-about-the-
tcp-chimney-offload-receive-side-scaling-and-net.

[19] Intel Arria 10 product table. https://www.intel.co.id/content/dam/www/
programmable/us/en/pdfs/literature/pt/arria-10-product-table.pdf.

[20] Intel C610 Series Chipset Datasheet. https://www.intel.com/content/dam/www/
public/us/en/documents/datasheets/x99-chipset-pch-datasheet.pdf.

[21] Intel DSA specification. https://www.intel.com/content/www/us/en/develop/
articles/intel-data-streaming-accelerator-architecture-specification.html.

[22] Intel QuickData Technology Software Guide. https://www.intel.com/content/
dam/doc/white-paper/quickdata-technology-software-guide-for-linux-
paper.pdf.

[23] IOAT benchmark. https://github.com/spdk/spdk/tree/master/examples/ioat/perf .
[24] io_uring. https://man.archlinux.org/man/io_uring.7.en.
[25] Istio. https://istio.io/latest/about/service-mesh/.
[26] Linkerd architecture. https://linkerd.io/2.11/reference/architecture/.
[27] Mellanox BlueField-2 DPU. https://www.nvidia.com/content/dam/en-zz/

Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf.
[28] Mellanox BlueField DPU DMA Guide. https://docs.nvidia.com/doca/sdk/dma-

samples/index.html.
[29] Microsoft Azure. https://azure.microsoft.com/.
[30] NCCL. https://github.com/NVIDIA/nccl.
[31] Open MPI: Open source high performance computing. https://www.open-

mpi.org/.
[32] Perftest. https://github.com/linux-rdma/perftest.
[33] Run Spark applications with Docker using Amazon EMR 6.x. https://

docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-docker.html.
[34] Seastar. http://www.seastar-project.org/.
[35] Spark and Docker: Your Spark development cycle just got 10x faster!

https://towardsdatascience.com/spark-and-docker-your-spark-development-
cycle-just-got-10x-faster-f41ed50c67fd.

[36] TCP mmap() program. https://lwn.net/Articles/752197/.
[37] What is container management and why is it important. https:

//searchitoperations.techtarget.com/definition/container-management-
software.

[38] Why use Docker containers for machine learning development?
https://aws.amazon.com/cn/blogs/opensource/why-use-docker-containers-
for-machine-learning-development/.

[39] Zero-copy TCP receive. https://lwn.net/Articles/752188/.
[40] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamoorthy, J. Wu, and D.K. Panda.

Zero copy sockets direct protocol over infiniband-preliminary implementation
and performance analysis. In Proc. IEEE ISPASS, 2004.

[41] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,
and Edouard Bugnion. IX: A protected dataplane operating system for high
throughput and low latency. In Proc. USENIX OSDI, 2014.

[42] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-
Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael,
Lisa Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. A cloud-scale
acceleration architecture. In Proc. IEEE/ACM MICRO, 2016.

[43] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable RDMA RPC on reliable con-
nection with efficient resource sharing. In Proc. ACM EuroSys, 2019.

[44] Yuchen Cheng, Chunghsuan Wu, Yanqiang Liu, Rui Ren, Hong Xu, Bin Yang, and
Zhengwei Qi. OPS: Optimized shuffle management system for Apache Spark. In
Proc. ACM ICPP, 2020.

[45] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and OrionHodson.
FaRM: Fast remote memory. In Proc. USENIX NSDI, 2014.

[46] Weibei Fan, Jing He, Zhijie Han, Peng Li, and Ruchuan Wang. Intelligent re-
source scheduling based on locality principle in data center networks. IEEE
Communications Magazine, 58(10):94–100, 2020.

[47] Philipp Fent, Alexander van Renen, Andreas Kipf, Viktor Leis, Thomas Neumann,
and Alfons Kemper. Low-latency communication for fast DBMS using RDMA
and shared memory. In Proc. IEEE ICDE, 2020.

[48] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. Azure Accelerated
Networking: SmartNICs in the public cloud. In Proc. USENIX NSDI, 2018.

[49] D. Goldenberg, M. Kagan, R. Ravid, and M.S. Tsirkin. Sockets Direct Protocol
over InfiniBand in clusters: is it beneficial? In Proc. IEEE HOTI, 2005.

[50] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy. MegaPipe:
A new programming interface for scalable network I/O. In Proc. USENIX OSDI,
2012.

[51] Zhiqiang He, Dongyang Wang, Binzhang Fu, Kun Tan, Bei Hua, Zhi-Li Zhang,
and Kai Zheng. MasQ: RDMA for Virtual Private Cloud. In Proc. ACM SIGCOMM,
2020.

[52] Michio Honda, Giuseppe Lettieri, Lars Eggert, and Douglas Santry. PASTE: A
network programming interface for non-volatile main memory. In Proc. USENIX
NSDI, 2018.

[53] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. NetVM: High perfor-
mance and flexible networking using virtualization on commodity platforms. In
Proc. USENIX NSDI, 2014.

[54] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong, Sunghwan
Ihm, Dongsu Han, and KyoungSoo Park. mTCP: A highly scalable user-level
TCP stack for multicore systems. In Proc. USENIX NSDI, 2014.

[55] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo. A
unified architecture for accelerating distributed DNN training in heterogeneous
GPU/CPU clusters. In Proc. USENIX OSDI, 2020.

[56] Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter RPCs can be
general and fast. In Proc. USENIX NSDI, 2019.

[57] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Using RDMA efficiently
for key-value services. In Proc. ACM SIGCOMM, 2014.

[58] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design guidelines for
high performance RDMA systems. In Proc. USENIX ATC, 2016.

[59] Anuj Kalia, Michael Kaminsky, and David G. Andersen. FaSST: Fast, scalable
and simple distributed transactions with two-sided (RDMA) datagram RPCs. In
Proc. USENIX OSDI, 2016.

[60] Junaid Khalid, Eric Rozner, Wesley Felter, Cong Xu, Karthick Rajamani, Alexandre
Ferreira, and Aditya Akella. Iron: Isolating network-based CPU in container
environments. In Proc. USENIX NSDI, 2018.

[61] Daehyeok Kim, Tianlong Yu, Hongqiang Liu, Yibo Zhu, Jitu Padhye, Shachar
Raindel, ChuanxiongGuo, Vyas Sekar, and Srinivasan Seshan. FreeFlow: Software-
based virtual RDMA networking for containerized clouds. In Proc. USENIX NSDI,
2019.

[62] Sameer G. Kulkarni, Wei Zhang, Jinho Hwang, Shriram Rajagopalan, K. K. Ra-
makrishnan, TimothyWood, Mayutan Arumaithurai, and Xiaoming Fu. NFVnice:
Dynamic backpressure and scheduling for NFV service chains. In Proc. ACM
SIGCOMM, 2017.

[63] Jiaxin Lei, Manish Munikar, Kun Suo, Hui Lu, and Jia Rao. Parallelizing packet
processing in container overlay networks. In Proc. ACM EuroSys, 2021.

[64] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao Zhang. SocksDirect: Data-
center sockets can be fast and compatible. In Proc. ACM SIGCOMM, 2020.

[65] Jian Li, Shuai Xue, Wang Zhang, Ruhui Ma, Zhengwei Qi, and Haibing Guan.
When I/O interrupt becomes system bottleneck: Efficiency and scalability en-
hancement for SR-IOV network virtualization. IEEE Transactions on Cloud Com-
puting, 7(4):1183–1196, 2019.

[66] Xiaofeng Lin, Yu Chen, Xiaodong Li, Junjie Mao, Jiaquan He, Wei Xu, and
Yuanchun Shi. Scalable kernel TCP design and implementation for short-lived
connections. In Proc. ASPLOS, 2016.

[67] Glenn K. Lockwood, Mahidhar Tatineni, and Rick Wagner. SR-IOV: Performance
benefits for virtualized interconnects. In Proc. ACM XSEDE, 2014.

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/scalable-i-o-virtualized-servers-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/scalable-i-o-virtualized-servers-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/scalable-i-o-virtualized-servers-paper.pdf
https://aws.amazon.com/
https://www.techradar.com/news/amd-zen-4-epyc-cpu-could-be-an-epic-128-core-256-thread-monster
https://www.techradar.com/news/amd-zen-4-epyc-cpu-could-be-an-epic-128-core-256-thread-monster
https://github.com/baidu-research/baidu-allreduce
https://bpftrace.org/
https://github.com/cilium/cilium
https://www.cisco.com/c/en/us/solutions/service-provider/industry/cable/cloud-native-network-functions.html
https://www.cisco.com/c/en/us/solutions/service-provider/industry/cable/cloud-native-network-functions.html
https://research.aimultiple.com/container-management/
https://research.aimultiple.com/container-management/
https://containerd.io/
https://cloud.google.com/deep-learning-containers
https://cloud.google.com/deep-learning-containers
https://docs.oracle.com/en/learn/ocne-sidecars/index.html#introduction
https://docs.oracle.com/en/learn/ocne-sidecars/index.html#introduction
http://www.f-stack.org/
https://www.intel.com/content/www/us/en/developer/articles/technical/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://github.com/microsoft/Freeflow/tree/tcp
https://github.com/facebookincubator/gloo
https://lwn.net/Articles/752207/
https://www.openfabrics.org/images/eventpresos/workshops2014/IBUG/presos/Thursday/PDF/09_Sockets-over-rdma.pdf
https://www.openfabrics.org/images/eventpresos/workshops2014/IBUG/presos/Thursday/PDF/09_Sockets-over-rdma.pdf
https://www.openfabrics.org/images/eventpresos/workshops2014/IBUG/presos/Thursday/PDF/09_Sockets-over-rdma.pdf
https://support.microsoft.com/en-us/help/951037/information-about-the-tcp-chimney-offload-receive-side-scaling-and-net
https://support.microsoft.com/en-us/help/951037/information-about-the-tcp-chimney-offload-receive-side-scaling-and-net
https://www.intel.co.id/content/dam/www/programmable/us/en/pdfs/literature/pt/arria-10-product-table.pdf
https://www.intel.co.id/content/dam/www/programmable/us/en/pdfs/literature/pt/arria-10-product-table.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/x99-chipset-pch-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/x99-chipset-pch-datasheet.pdf
https://www.intel.com/content/www/us/en/develop/articles/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/www/us/en/develop/articles/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/dam/doc/white-paper/quickdata-technology-software-guide-for-linux-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/quickdata-technology-software-guide-for-linux-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/quickdata-technology-software-guide-for-linux-paper.pdf
https://github.com/spdk/spdk/tree/master/examples/ioat/perf
https://man.archlinux.org/man/io_uring.7.en
https://istio.io/latest/about/service-mesh/
https://linkerd.io/2.11/reference/architecture/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://docs.nvidia.com/doca/sdk/dma-samples/index.html
https://docs.nvidia.com/doca/sdk/dma-samples/index.html
https://azure.microsoft.com/
https://github.com/NVIDIA/nccl
https://www.open-mpi.org/
https://www.open-mpi.org/
https://github.com/linux-rdma/perftest
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-docker.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-docker.html
http://www.seastar-project.org/
https://towardsdatascience.com/spark-and-docker-your-spark-development-cycle-just-got-10x-faster-f41ed50c67fd
https://towardsdatascience.com/spark-and-docker-your-spark-development-cycle-just-got-10x-faster-f41ed50c67fd
https://lwn.net/Articles/752197/
https://searchitoperations.techtarget.com/definition/container-management-software
https://searchitoperations.techtarget.com/definition/container-management-software
https://searchitoperations.techtarget.com/definition/container-management-software
https://aws.amazon.com/cn/blogs/opensource/why-use-docker-containers-for-machine-learning-development/
https://aws.amazon.com/cn/blogs/opensource/why-use-docker-containers-for-machine-learning-development/
https://lwn.net/Articles/752188/

CoNEXT ’22, December 6–9, 2022, Roma, Italy Q. Su et al.

[68] Patrick MacArthur and Robert D. Russell. An Efficient Method for Stream
Semantics over RDMA. In Proc. IEEE IPDPS, 2014.

[69] Ilias Marinos, Robert NM Watson, and Mark Handley. Network stack specializa-
tion for performance. In Proc. ACM SIGCOMM, 2014.

[70] YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and KyoungSoo
Park. AccelTCP: Accelerating network applications with stateful TCP offloading.
In Proc. USENIX NSDI, 2020.

[71] Jaehyun Nam, Seungsoo Lee, Hyunmin Seo, Phil Porras, Vinod Yegneswaran, and
Seungwon Shin. BASTION: A security enforcement network stack for container
networks. In Proc. USENIX ATC, 2020.

[72] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
López-Buedo, and Andrew W. Moore. Understanding PCIe performance for end
host networking. In Proc. ACM SIGCOMM, 2018.

[73] Zhixiong Niu, Hong Xu, Peng Cheng, Qiang Su, Yongqiang Xiong, Tao Wang,
Dongsu Han, and Keith Winstein. NetKernel: Making network stack part of the
virtualized infrastructure. In Proc. USENIX ATC, 2020.

[74] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan
Wu, and Chuanxiong Guo. A generic communication scheduler for distributed
DNN training acceleration. In Proc. ACM SOSP, 2019.

[75] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F. Wenisch, Monica Wong-
Chan, Sean Clark, Milo M. K. Martin, Moray McLaren, Prashant Chandra, Rob
Cauble, Hassan M. G. Wassel, BehnamMontazeri, Simon L. Sabato, Joel Scherpelz,
and Amin Vahdat. 1RMA: Re-envisioning remote memory access for multi-tenant
datacenters. In Proc. ACM SIGCOMM, 2020.

[76] Livio Soares and Michael Stumm. FlexSC: Flexible system call scheduling with
exception-less system calls. In Proc. USENIX OSDI, 2010.

[77] Shin-Yeh Tsai and Yiying Zhang. LITE Kernel RDMA Support for Datacenter
Applications. In Proc. ACM SOSP, 2017.

[78] Jian Yang, Joseph Izraelevitz, and Steven Swanson. FileMR: Rethinking RDMA
networking for scalable persistent memory. In Proc. USENIX NSDI, 2020.

[79] Kenichi Yasukata, Michio Honda, Douglas Santry, and Lars Eggert. StackMap:
Low-latency networking with the OS stack and dedicated NICs. In Proc. USENIX
ATC, 2016.

[80] Tianlong Yu, Shadi Abdollahian Noghabi, Shachar Raindel, Hongqiang Liu, Jitu
Padhye, and Vyas Sekar. FreeFlow: High performance container networking. In
Proc. ACM HotNets, 2016.

[81] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phil Lopreiato, Gregoire
Todeschi, KK Ramakrishnan, and Timothy Wood. OpenNetVM: A platform for
high performance network service chains. In Proc. ACM HotMiddlebox, 2015.

[82] Dongfang Zhao, Mohamed Mohamed, and Heiko Ludwig. Locality-aware sched-
uling for containers in cloud computing. IEEE Transactions on Cloud Computing,
8(2):635–646, 2020.

[83] Chao Zheng, Qiuwen Lu, Jia Li, Qinyun Liu, and Binxing Fang. A flexible and
efficient container-based NFV platform for middlebox networking. In Proc. ACM
SAC, 2018.

[84] Danyang Zhuo, Kaiyuan Zhang, Yibo Zhu, Hongqiang Harry Liu, Matthew Rock-
ett, Arvind Krishnamurthy, and Thomas Anderson. Slim: OS kernel support for
a low-overhead container overlay network. In Proc. USENIX NSDI, 2019.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Container Communication
	2.2 Breakdown of Communication Overhead for Bulky Transfers
	2.3 Why Not Shared Memory?
	2.4 Why Not Commodity RDMA?
	2.5 Our Design Choice

	3 Design
	3.1 Highlights and Overview
	3.2 Communication and Memory APIs
	3.3 Memory Management
	3.4 Connection Management
	3.5 Data Transmission

	4 Implementation
	5 Evaluation
	5.1 Resource Savings
	5.2 Throughput
	5.3 Connection Scalability
	5.4 Latency and Fairness
	5.5 Application Usecases

	6 Discussion
	7 Related Work
	8 Conclusion
	References

