
PilotFish: Harvesting Free Cycles of Cloud Gaming with Deep Learning Training

Wei Zhang∗

Shanghai Jiao Tong University
Binghao Chen

Shanghai Jiao Tong University
Zhenhua Han

Microsoft Research Asia

Quan Chen
Shanghai Jiao Tong University

Peng Cheng
Microsoft Research Asia

Fan Yang
Microsoft Research Asia

Ran Shu
Microsoft Research Asia

Yuqing Yang
Microsoft Research Asia

Minyi Guo
Shanghai Jiao Tong University

Abstract

Cloud gaming services have become important workloads
in cloud datacenter. However, our investigation shows that a
cloud gaming service cannot saturate the modern cloud GPUs.
One way to improve the GPU utilization is to co-locate mul-
tiple workloads within one GPU, which is challenging for
cloud gaming due to its highly fluctuated and unpredictable
GPU usage pattern. In this paper, we present PilotFish, a
high-performance system that harvests the free GPU cycles of
cloud gaming with deep learning (DL) training, while incur-
ring almost zero interference to cloud gaming. We co-locate
DL training jobs with cloud gaming, because they have stable
and predictable workloads and have no strict latency require-
ment. In more detail, PilotFish captures the idle periods of the
game’s GPU usage with its low-overhead instrumentation to
graphic libraries in sub-millisecond granularity. To avoid the
potential interference to cloud gaming, PilotFish schedules
training computation kernels only when they can finish before
the idle GPU periods, and preempts straggler kernels running
longer than expected. Our evaluation on popular cloud games
and DL models shows PilotFish can harvest up to 85.1% of
the idle GPU time from cloud gaming with no interference.

1 Introduction

Cloud gaming is gaining popularity in recent years. As shown
in Figure 1, players of cloud gaming only use a thin client that
interacts with games running on cloud servers and receives
the stream of rendered frames via Internet [38]. Cloud gam-
ing greatly reduces the hardware requirement of high-quality
video games. Mobile clients with no or weak GPU can still
enjoy the good visual effect of powerful GPUs. Cloud gaming
has become an important workload in major cloud service
providers, e.g., Microsoft’s Xbox Remote Play [11], Google’s
Stadia [7], Nvidia’s Geforce Now [15], Sony’s PlayStation
Now (running on Azure) [18], Amazon’s AppStream [1].

∗This work is done while Wei Zhang is an intern in Microsoft Research.

Figure 1: In cloud gaming games, players send control mes-
sages (keyboard and mouse) to cloud servers. Game scenes
are rendered as frames in cloud servers and streamed to edge
devices via internet.

Due to the limitations of the network, encoding and decod-
ing capability, and resolution of mobile devices, major cloud
gaming service only provides limited streaming quality that
is far lower than the increasing capability of modern GPUs.
For example, Microsoft’s Xbox Remote Play and PlayStation
Now only support up to 1080p at 60FPS. However, the lat-
est GPUs for gaming (e.g., Nvidia’s 3090Ti) can support 4K
(2160p) resolution at up to 144FPS. Running cloud gaming of
limited streaming quality on powerful GPUs would inevitably
waste the GPU cycles. Our evaluation of popular games shows
most of them have a utilization lower than 50% with cloud
gaming GPUs. It is important to improve the utilization to
reduce the operation cost of cloud gaming services.

To improve GPU utilization for cloud gaming, a nat-
ural solution is to co-locate multiple workloads in one
GPU (e.g., multiple games [29, 36] or other GPU work-
loads [23–25,50,51]). Such approaches face great challenges,
due to the high randomness of the gaming workload. A game’s
utilization of different resources (including GPU, CPU, PCI-e
and disk I/O) varies greatly across video frames. Such vari-
ation is difficult to predict due to the random interaction be-
tween players and changing game scenes. Moreover, different
games could exhibit very diverse resource usage patterns, fur-
ther increasing the degree of unpredictability. Co-locating
multiple games in a GPU would inevitably lead to interfer-



Figure 2: The procedures of cloud gaming. On receiving user input, the game logic decides the content of the scene to be
rendered, which is comprised of a list of draw calls using graphic libraries. The draw calls are pushed into a command queue for
the frame and submitted to the hardware for rendering the frame. The rendered frames are encoded by dedicated chips (e.g.,
NVENC [13] of Nvidia’s GPUs) and sent to the cloud gaming client.

ence when long rendering times from different games collide.
To safely harvest the GPU free cycles from cloud gaming, it is
necessary to choose a more predictable and stable workload
for co-location, where we find Deep Learning (DL) training,
a pervasive workload in cloud data centers, is a good fit.

In this paper, we present PilotFish, a high-performance
system that harvests the free GPU cycles of cloud gaming
with deep learning training, without impacting gaming expe-
riences. Instead of predicting the varying gaming workload,
PilotFish exploits idle GPU periods in a reactive manner. Pi-
lotFish exposes a real-time resource monitoring interface by
instrumenting graphic libraries (e.g., DirectX or Vulkan) for
quickly reporting (within 10 µs) the start and completion of
the rendering of a game frame. This way, PilotFish can pre-
cisely capture idle GPU periods of games. This design allows
PilotFish to support all games running on common graphic
libraries without modifying or re-compiling game code.

PilotFish further leverages the predictability of deep learn-
ing training in the scheduling. It is well-known that deep
learning training consists of iterative training steps. The com-
pute kernels in each training step have a highly predictable
execution time and can be obtained through offline profil-
ing [40,46]. With the known duration of a specific DL training
kernel (usually on the order of sub-millisecond), PilotFish is
able to safely schedule a deep learning training job to leverage
the idle time of gaming workload, without violating the QoS
of cloud gaming. The interference on other types of hardware
resources is also avoided via state-of-the-art techniques, e.g.,
Baymax [25] for PCI-e. Furthermore, to prevent from training
anomaly, where a DL training kernel does not complete in
the estimated time, PilotFish can proactively terminate the
training (<1ms) with limited loss of training progress.

We have implemented a prototype of PilotFish to sup-

port games on DirectX 12 [3] and DL training using Nvidia
CUDA 11 [14]. We evaluate PilotFish using popular games
for cloud gaming and widely-used DL models for training.
Evaluation result proves PilotFish can strictly guarantee the
QoS of cloud gaming when co-located with DL training. Pi-
lotFish can harvest up to 85.1% of the idle GPU time without
interference, compared to straw-man baselines that degrade
the 99%-ile FPS by over 30% to achieve the same harvest
ratio.

The key contributions of the paper are as follows:

• We identify the low GPU utilization problem of cloud
gaming and the challenges of co-location due to the
randomness of games.

• We characterize the cloud gaming workload and point
out that DL training is a right workload to be co-located
with cloud gaming to improve GPU utilization.

• We propose mechanisms for quickly capturing idle GPU
periods of gaming and fine-grained scheduling of co-
located DL training workload, which guarantee no inter-
ference.

2 Motivation

In this section, we study the common cloud gaming pipeline
shown in Figure 2. We investigate why there is low utilization
issue in cloud gaming services and the challenges of harvest-
ing free GPU cycles from games. Then we motivate why DL
training is a good fit for co-location.



Table 1: The GPU and CPU utilization of cloud gaming.

Game Average
GPU Util.

Peak
GPU Util.

VRAM
(GB) CPU Util. FPS

Dota 2 38.2% 45% 1.61 21.9% 59.9
League of
Legends 26.9% 41% 1.16 22.0% 59.8

PUBG 40.6% 95% 4.05 28.9% 60.1
CS:GO 45.0% 57% 2.6 69.7% 201

Civilization 5 32.3% 42% 1.11 15% 59.8
The Division 2 89.5% 98% 3.12 46.11% 58.66

Assassin’s
Creed Odyssey 69.2% 78% 2.39 66.3% 59.68

Ashes of the
Singularity 89.8% 98% 3.42 79.23% 57.31

0

20

40

60

FP
S

HIT RDR2 AOS

+IT
only

RDR2
only

A2S
only

+IT+RDR2 +IT+A2S RDR2+A2S
0

50

100

G
PU

 u
til

iz
at

io
n(

%
)

Figure 3: The average FPS and GPU utilization of indepen-
dent execution of popular games and their co-located execu-
tion on Nvidia RTX 2060. (HIT: HITMAN3, RDR2: Red
Dead Redemption 2 and AOS: Ashes of the Singularity)

2.1 GPU Under-utilization of Cloud Gaming
Existing cloud gaming platforms allocate each player to a
dedicated server for running the requested game to ensure
players’ satisfactory experiences. For cloud gaming service
providers, major concerns are focused on network latency and
operational cost. The network latency is considerably reduced
today and becomes viable for cloud gaming. However, the
low resource utilization still leads to significant operation cost.
We use the Nvidia RTX 2060 GPU, of which the computing
ability is 6.4 teraflops, as the experimental platform, which
has comparable performance to the Xbox One X’s GPU (6.01
teraflops) used by Microsoft’s cloud gaming service. We in-
vestigate the performance of eight of the most popular games.
Table 1 summarizes the resource utilization of these games
on NVIDIA RTX 2060 with cloud gaming rendering qual-
ity, mostly 1080p and 60 Frames Per Second (FPS). Five of
the eight games have a GPU utilization of lower than 50%,
showing the potential opportunities for improvement.

Modern GPUs are becoming more and more powerful.
However, the QoS of cloud gaming is much lower than the ca-
pability of modern GPUs. According to Steam’s survey [19],
over 83.67% of PC gamers use resolution ≤ 1920x1080. Most
smartphones only have a screen ≤ 1080p resolution. Also,
the higher resolution requires better network quality and hard-
ware capability (for decoding). Currently, Xbox remote play

Figure 4: The fluctuation of frame time over time of three
popular games.

Figure 5: The fluctuation of CPU, storage and network uti-
lization over time of Hitman 3.

only supports streaming quality of at most 1080p and 60 FPS.
We anticipate the low GPU utilization issue will become

more severe on the latest generation of GPUs used by gaming
clouds. For example, Google Stadia uses an AMD GPU with
10.7 teraflops [7], Microsoft’s Xbox Series X chip has 12
teraflops [11], Nvidia’s RTX 3090 has 35.58 teraflops.

2.2 Challenges
A natural idea to improve the GPU utilization of cloud gaming
is to co-locate multiple games into the same GPU. However,
we observe co-locating multiple games could severely inter-
fere with each other, even when the GPU is still underutilized.

Figure 3 demonstrates the FPS of three popular cloud
games and their GPU utilization in two situations: indepen-
dently execution and co-located execution. When the games
run alone, they can achieve around 50% of GPU utilization on
60 FPS. However, when two games are co-located, the FPS
drops greatly (e.g., RDR2’s FPS drops to 20 from 60) but the
GPU utilization is only improved by up to 24%.

The main cause of the degraded co-location performance
comes from the randomness of games. As shown in Figure 4,
a game’s frametime (the time to render a frame) could vary
significantly over time due to the different complexity of the
scene. Different games would further exhibit a very diverse
pattern of GPU consumption. Moreover, in addition to GPUs,
the resource usage of other resource types (CPU, storage, etc.)
also fluctuates over time as illustrated in Figure 5. When con-
tention appears on these resources, the submission of draw
calls would be blocked, which also leads to lower GPU uti-
lization. This explains why the co-located games only have



limited improvement on GPU utilization in Figure 3.
The highly random gaming behaviours make it impossi-

ble to co-locate the other random and interactive workloads
like game without impacting the gaming experience. Previ-
ous works [36, 43] using static profiling to co-locate multiple
games in a best-effort manner could still suffer from the in-
terference due to random rendering content. We seek to find
a more stable and predictable workload as the candidate for
co-location, where we find DL training is a good fit.

2.3 Co-location with DL Training
DL training is a pervasive workload in cloud data centers.
The major cloud gaming service providers (e.g., Microsoft,
Google, Amazon) also have a huge demand for training DL
models with GPUs [33]. The key reason we consider DL
training for co-location with cloud gaming is its predictability
and fine-granularity. Figure 6 shows the execution time of sta-
tistical top 20 frequent kernels from six popular DL training
models. The figure shows that the duration of all training ker-
nels is relatively stable, it usually varies within a few percent.
Thus, by leveraging the predictability and iterative pattern of
DL kernels, the system can know their duration beforehand.
Also, the execution time of DL kernels is typically less than
1ms, thus it is very suitable to be scheduled to exploit the
GPU idle time.

Figure 6: The execution time of top 20 frequent kernels from
six popular models. (each bar is a kernel).

Despite the opportunity, the direct co-location of gaming
and DL training without leveraging the characteristics of DL
training could still incur a severe drop in FPS due to complex
interference behaviors. For example, if the DL training kernels
are submitted when a frame is still under rendering, both
workloads would contend for GPU time and postpone the
completion of game rendering.

Figure 7: FPS of games when co-located with DL training.

Figure 7 shows the normalized 99%-ile FPS when five pop-
ular games are co-located with DL training tasks on a Nvidia
2060 GPU. The DL training tasks includes Resnet50 [30],
VGG [44] and Mobilenet [31]. In the figure, the x-axis indi-
cates the combination of games and DL training tasks, and
the y-axis shows the 99%-ile FPS normalized to its FPS tar-
get. All games are affected by naively co-locating with DL
training models. During co-location, we observe that the FPS
of game is affected by the duration of frame rendering, the
DL training kernel scheduling and the contention on shared
resources. Therefore, it requires very careful management of
the co-located DL training jobs to avoid interfering the cloud
gaming, which is the main goal of PilotFish.

3 PilotFish Overview

We consider the scenario that DL training has a lower prior-
ity than the interactive cloud gaming service. Therefore, it is
required that DL training should not generate interference to
cloud gaming. PilotFish co-designs the cloud gaming services
and deep learning training frameworks so that they can col-
laboratively work together. Figure 8 demonstrates the overall
design of PilotFish.

Instead of predicting the random gaming behaviours, Pilot-
Fish monitors the frame-level execution and resource-usage
information in real time with very low overheads. Existing
frame monitoring tools [8,9,17] for gaming are usually based
on event-tracing technology [4], which is for general-purpose
application by design and infeasible for PilotFish’s require-
ment due to its high latency. To capture the idle GPU periods,
PilotFish instruments the graphic libraries to quickly and
precisely detect when the rendering of a frame finishes and
when the next frame will be submitted (according to the FPS
requirement).

Within the idle period of a game, PilotFish schedules the
computation kernels safely without interfering with the games.
The computation kernels for DL training should only be exe-
cuted between the end of the previous frame and the start of
the next frame. This relies on the kernel duration predictor
to provide the execution time of the computation kernels, by
leveraging their predictability as we discussed in Figure 6. A
computation kernel can be submitted only when it can finish



Client1
User input

Compressed 
Image

Proxy

Game Loop Detector
Global 

memory

GPU

SMs

Predict duration

2D/3D 
APIs

Frame execution 
information

Kernel Duration
Predictor

GPU
commands Copy 

buffer

Kernel

Mem
cpy

Real execution information

Control Feedback

Real execution information

CUDA
Runtime

PCIe

Pilotfish Runtime System

DLT 
Framework

GPU Kernel
launch 

Other resource
management

Task executor

Workflow

Rendering 
Engine

DL kernel scheduler

ŏ
Ready DL kernel pool

2D/3D Library 
(DirectX)

…
ExecuteCommandList

Figure 8: The Overall design of PilotFish. The Game Loop Detector quickly obtains the idle GPU periods via instrumenting the
graphic libraries. The DL kernel scheduler dynamically and safely schedules the kernels with the predicted kernel duration. The
task executor guarantees the DL kernel execution will not interfere with cloud gaming on GPU and other types of resources.

before the rendering of the next frame starts so that it will not
contend with the game rendering on GPU. Since PilotFish
only schedules DL kernels without changing its computation,
it has no impact on the computation result of DL training.

During the execution of DL training’s computation kernels,
PilotFish keeps monitoring their progress in its task execu-
tor. Once potential interference could appear due to strag-
gler kernels, PilotFish should immediately preempt the job
to guarantee cloud gaming is not affected. To minimize the
loss of training progress due to preemption, we introduce a
low-overhead checkpointing mechanism to only kill the com-
putation kernels without losing the trained weight in memory.

We explain in § 4 how PilotFish instruments the graphic
libraries to obtain the idle GPU periods. In § 5, we elaborate
on how the computation kernels of DL training are scheduled.
Then, we demonstrate the task executor in § 6 that manages
the task execution on GPUs and other types of resources to
provide the strict guarantee of no interference to games.

4 Game Loop Instrumentation

To capture the random idle GPU cycles from games, we need
to monitor the frame execution information, i.e., the start and
end rendering time of each frame, in real time. Nowadays,
there are many popular frame monitoring software for ren-
dering workloads including PresentMon [17], IntelGPA [9],
GpuView [8], and FrameView [5]. They all use event-tracing
technology [4], which records events with high latency (usu-
ally >1 second). However, cloud gaming usually requires 60
frames per second, i.e., 16.67 ms per frame, which cannot
accept such a large tracing latency.

In PilotFish, we exploit the fact that most games are de-
veloped on common graphic libraries (e.g., DirectX [3],

Table 2: The Game Loop Detector Performance.

Avg. Overhead / 60 frame Avg. Err.
ACOdyssey 0.1058 ms 0.363%

Genshin Impact 0.070668 ms 0.526%

Vulkan [20]), which translate the graphical operations into
GPU commands. When the game finishes generating the draw
calls, the GPU commands will be submitted to the GPU via
a specific API (e.g., ExecuteCommandList in DirectX). Pi-
lotFish instruments the command submission API of graphic
libraries to detect the start time of frame rendering. The instru-
mentation latency is very low, usually within 1 microsecond
per frame. Moreover, to obtain when the rendering completion
time of the submitted frame, PilotFish inserts an additional
GPU command for notification of rendering completion at
the end of the submission queue. Since the QoS of cloud
gaming determines the maximum frame rate, e.g., an FPS
of 60 means there is at most one frame per 16.67ms. When
PilotFish is notified with the rendering completion, we can
calculate when the next frame would appear, thus the time
period before the next frame is guaranteed to be idle. Table 2
shows the average overhead and error for FPS perception
through the game loop detector. The overhead is negligible
where the average overhead per 60 frames is around 0.1ms.
We also validate FPS measured from PilotFish by comparing
with PresentMon [17] as the ground-truth. The average mea-
surement error of FPS is 0.526%. Instrumenting the graphic
libraries that most games built on allows PilotFish to gener-
ally support a wide range of existing games and future games
without specific modification for every game.



Algorithm 1: DL training scheduler

1 while true do
2 if isFrameRendering() then
3 WaitForFrameComplete();
4 f reeTimeslice = FrameTimeQoS -

LastFrameRenderingTime;
5 else
6 kernel = GetKernelFramePool();
7 kernelTime = PredictDuration(kernel);
8 if f reeTimeslice > kernelTime then
9 LaunchKernel(kernel);

10 f reeTimeslice =
f reeTimeslice− kernelTime;

5 DL Training Scheduler

With the captured GPU idle periods, PilotFish will schedule
the computation kernels from DL training to harvest the free
GPU cycles. As shown in Figure 9, PilotFish only allows the
DL kernels to execute within the idle GPU periods to avoid
GPU contention. Algorithm 1 describes the scheduling strat-
egy of PilotFish: (1) when the game is using GPU to perform
rendering, it will wait for the notification of the rendering
completion; (2) when the game finishes rendering a frame,
the scheduler sends the DL kernels that can finish before the
deadline when FPS QoS is affected (e.g., when the QoS is 60
frames per second, the start time between two frames should
be no more than 16.67 ms).

PilotFish’s DL training scheduler relies on the prediction of
computation kernels to decide whether the submitted kernel
can finish before the next frame starts (Line 7 in Algorithm 1).
PilotFish leverages the predictability and iterative pattern of
DL training. The kernels for the same model will be repeat-
edly submitted in every iteration with different input data. As
we have shown in Figure 6, the kernel duration has a very low
variance, which can be easily obtained via offline profiling. In
PilotFish, the DL training jobs to co-locate with games will
be profiled on idle GPUs for tens of iterations (usually a few
minutes), and record their kernel execution time.

Note that, the GPU context for DL training is first cre-
ated in the job initialization, thus its overhead does not affect
the scheduling of DL kernels. Also, the launching of com-
putation kernels has an overhead of 10 us, which is usually
less or equal to a kernel’s execution time. To hide the kernel
launching overhead, like most training frameworks, PilotFish
submits the computation kernels asynchronously (as shown
in Figure 9). Therefore, PilotFish only suffers from at most
one kernel launching overhead at the first DL kernel in each
frame, which is negligible.

Game LogicCPU

GPU R(N)

Frame N Frame N+1

Game Logic

Time16.67 ms

R(N+1)

Signal

DL

0 ms

R (N-1)

*R: Game Frame Rendering
*L: DL Kernel Launching
*DL: DL Kernel Execution

L

DL DL DL

L L L

DL

L

33.33 ms

Figure 9: Fine-grained scheduling of DL kernel.

6 Task Executor

After the DL kernel is scheduled, the task executor monitors
the kernel execution to avoid straggler kernels that run longer
than expected and do not finish before the next rendering
frame. In case the potential interference could appear, the
task executor will terminate the process quickly to reclaim
the GPU for game rendering while minimizing the loss of
training progress. In addition to GPUs, the task executor also
manages the other resource types including CPUs, PCIe bus
and Disk I/O to avoid non-GPU interference.

6.1 GPU Kernel Execution
During the execution of computation kernels, PilotFish’s task
executor keeps monitoring the running kernels on their exe-
cution time. Although, not often, some straggler kernels may
run longer than the predicted time, which may postpone the
rendering if they do not finish before the next frame appears.
Note that the straggler kernels will not lead to QoS violation
if the rendering time of the next frame is short and can still
be finished within the deadline. Also, a slight drop in FPS
(1 ∼ 2 FPS) may not affect the gaming experience for non-
sensitive players. Therefore, PilotFish provides two types of
guarantees:

1) Hard guarantee: once a straggler kernel appears that
it can not finish before the next frame rendering begins, the
task executor suspends the running DL kernel on the GPU
immediately.

2) Soft guarantee: PilotFish does not terminate the strag-
gler kernels unless FPS drop exceeds a certain threshold.

Using soft guarantee is more friendly to DL training models
that contain kernels of long execution time, e.g., the longest
kernel of LSTM runs for 2.4 ms. Our evaluation in § 7.4
shows using the soft guarantee can harvest over 30% more
GPU cycles than the hard guarantee when we co-locate LSTM
with RDR2.

6.2 Low-overhead Pause and Resume
Figure 10 shows the design of PilotFish’s DL training pause
and resume. In order to terminate the straggler kernel quickly,
PilotFish leverages the multi-priority streams of modern
GPUs to send asserting signal to DL training kernels at the
highest priority. The preemption can be done very fast within
0.7 ms. However, asserting the kernel would wipe out all the



memory state that results in loss of the training progress. Al-
though DL training may periodically save checkpoints, it is
done in a less frequent manner (usually every a few epochs
that takes hours).

… Hook
FPS ×

load

DL Kernel queue

K1 K2 Kn

Resuming DL Training

Pause Signal Received;
Send high priority kernel

Running DL Kernel

Stopping Overhead

×

Rendering Graphics (Frame n)

Running DL Kernel Process Stopped

Shared memory

Shared memory (Update per iteration)

：Model weightsAsserting Kernel

Figure 10: PilotFish’s low-overhead pause and resume.

Note that, we only want to terminate the computation to
avoid the interference to games thus it is not necessary to
clear the memory. To maintain the model weight while DL
training job suspension, PilotFish builds a shared memory
pool in an isolated process, that stores a backup version of
the model weight. When resuming a DL training job from
suspension, the pointer of shared memory is directly shipped
to the memory manager of the training frame. If the GPU sup-
ports inter-process communication (IPC), the shared memory
pool is placed on GPU thus no memory copy is needed. Other-
wise, The shared memory pool is placed on the host memory
thus requires resume the model weights by copying them
from host to GPU. Our evaluation shows resuming the model
from the host memory for ResNet-34, VGG-16, MobileNet
and LSTM takes 64, 69, 63 and 30 ms respectively. But Py-
Torch’s requires over 7 seconds via its default checkpointing
mechanism.

6.3 Mitigating Other Resource Contention
In addition to contention on GPU, both cloud gaming and
the DL training involve other resource types thus also need
careful management for interference avoidance.

CPU contention. For the DL training tasks, the CPU is
used for data pre-processing, e.g., image decoding, re-shaping,
data augmentation. Games use CPU for processing game logic
and simulate physical effects. CPU contention may appear
when the CPU-heavy DL training and games are co-located,
resulting in a decrease in FPS and an increase of game load-
ing time. PilotFish solves the resource contention on CPU
by setting the priority of threads: game threads use a high
priority and DL training threads use a low priority. Figure 11
shows the FPS of RDR2 to be co-located with a job that only
pre-processes the data of DL training. By increasing the stress
of the co-located job, the FPS and loading time of the game
is affected severely if they have the same CPU thread priority.
The Windows OS’s scheduler can fully mitigate the interfer-
ence on CPU after we set the thread priority of the co-located
job to low.

PCIe contention. Using PCIe bus, games transfer vertex
data and primitive data from pageable memory to GPU dur-

(a) FPS (b) Loading time

Figure 11: The FPS and loading time of RDR2 when co-
located with CPU threads for DL training.

(a) PCIe bus (b) Disk I/O

Figure 12: The inference to RDR2 on PCIe bus and Disk I/O.

ing execution, and the rendered frames are passed back from
GPU [21]. The DL training uses PCIe to transfer data and
model parameters. We have tested two popular games’ per-
formance benchmarks (Shadow of the Tomb Raider and The
Division 2). The average memcpy time per frame is 0.1748ms
and the frames with copy time greater than 0.5ms account for
3.9% of all frames. When games use pageable memory and
transfer data through PCIe bus alone, the achieved data trans-
fer rate is 11,045MB/s. Because the theoretical peak band-
width of 16x PCIe 3.0 bus used in our platform is 15,800MB/s
and the effective bandwidth is 12,160MB/s, the bus can only
support at most ⌊ 12160

11045⌋ = 1 memcpy task to transfer data in
their full speeds in the same direction. Therefore, it is neces-
sary to guarantee no interference on PCIe to avoid the game’s
data transfer. In PilotFish, we rely on the bandwidth reserva-
tion technique proposed in Baymax [25] to reserve the enough
PCIe bandwidth for cloud gaming. The DL training can only
transfer data when the game is not using PCIe.

Figure 12a shows the FPS of game RDR2 when co-located
with a stress test progress of memory copy. This stress test
copies data from the host memory to the global memory of
GPU, and then back to the host memory every 60 ms. We
control the proportion of the memcpy time to the total time
by controlling the size of the copied data. With increased
memory copy stress, the FPS drops greatly without reserving
the PCIe bandwidth for the game. The reservation guarantees
the game is not affected by PCIe contention.

Disk I/O contention. From disk, games loads rendering



resources (e.g., texture) and DL training loads training data.
Contention on disk I/O may lead to longer loading time for
games. Figure 12b illustrates the FPS and loading time of
a game co-located with a disk stress benchmark perform-
ing sequential read/write and 4K read/write [2]. Without any
isolation, the FPS does not change but the loading time is
increased by 21%. Moreover, we observe some objects are
not rendered in the displayed frame, which is unacceptable to
players. We apply the widely used I/O isolation techniques,
including namespace [12] and I/O priority [10]. We find both
techniques can guarantee the game performance by isolating
the I/O operations.

GPU memory and caches. To avoid swapping data among
GPU memory and host memory, PilotFish only co-locates
a game and a DL training job when the sum of their peak
GPU memory demand can fit into the GPU memory. Since
DL kernels are only executed in the idle GPU cycles, their
data movement between GPU memory and GPU caches has
no overlap with gaming. GPU commands from game and DL
training are serialized without preemption thus there is no
context switching overhead. DL training may flush the GPU
cache of rendering data of the previous frame. But we do not
observe impact on rendering time to the next frame.

Network and video stream encoding. In PilotFish, we
assume the distributed training uses a separate network from
the cloud gaming service due to security and performance
concern, thus there is no interference in network. Also, as we
have explained in Figure 2, video stream encoding is done
in a separate hardware encoder, thus is not interfered by DL
training.

7 Evaluation of PilotFish

We have implemented a prototype of PilotFish on DirectX
12, CUDA 11.1, Windows 10, and PyTorch 1.8 with 2400
lines of code. As far as we know, PilotFish is the first system
that co-locate cloud gaming with DL training. Therefore, we
compare PilotFish with several straw-man solutions to evalu-
ate its effectiveness. Overall, PilotFish can harvest up to 85%
of idle GPU cycles from cloud gaming without generating
interference.

7.1 Experimental Setup
We evaluate PilotFish with Steam Remote Play & Steam Link
(cloud gaming platform) using the Nvidia RTX 2060 GPU.
Table 3 summarizes the software and hardware experimental
configurations. Note that PilotFish does not rely on any spe-
cial hardware features of RTX 2060, and is easy to be set up
on other GPUs. As listed in Table 4, we use five popular Di-
rectX 12 games and four DL training applications to perform
the experiment.

Throughout our experiments, the FPS target of games is
60 FPS (16.67 ms/frame). The QoS of the game is defined

Table 3: Hardware and software specifications.

Specification

Hardware Intel(R) i7-7700 @ 3.60GHz
Nvidia GeForce RTX 2060

Software Windows10 19043.1110 CUDA Driver 11.1.96
CUDA SDK 11.1 DirectX 12.1 PyTorch 1.8.1

Table 4: Benchmarks used in the experiment.

Benchmarks Workloads

Ashes of the Singularity (AOS) Crazy quality on2560*1440; FPS: 60
GPU focused benchmark

Red Dead Redemption 2 (RDR2) Favor performance quality
on 2560*1440; FPS: 60

Shadow of the Tomb Raider (SOTTR) High quality on 2560*1440; FPS: 60
F1 2021 (F1) Medium quality on 1920*1080; FPS: 60

HITMAN3 (HIT3) Ultra quality on 2560*1440; FPS: 60

DL Training
ResNet-34 (RS) [30]; VGG-16 [44] ;
MobileNet (MN) [31]; LSTM [45];
Dataset: ImageNet-1k, Wikitext-2

as the 99%-ile latency normalized to 60 FPS. We calculate
the GPU utilization as the portion of time when the GPU is
busy, which is the same as the definition of nvidia-smi [16].
We define the metric, harvest ratio, as the portion of GPU idle
time that is harvested for DL training, which is calculated as

Harvest Ratio =
GPUUtilco −GPUUtilGame

100%−GPUUtilGame
, (1)

where GPUUtilGame is the GPU utilization of running game
independently, and GPUUtilco is the GPU utilization when
game and DL training are co-located. For PilotFish, the time
of model checkpointing is not considered as harvested.

Comparison Baselines. To compare the performance of
PilotFish, we propose three straw-man solutions:

1. GameMode [6] is a feature introduced by Windows to
prioritize CPU threads of games. It does not control GPU
execution.

2. Constant-Speed controls the DL kernel submission
speed with a constant rate.

3. Adaptive-Speed controls the DL kernel submission
speed dynamically according to the FPS profiled from
the event-tracing tool PresentMon [17]. If FPS < 60, the
DL kernel submission speed is halved, otherwise, it is
multiplied by 1.2.

7.2 GPU Utilization Improvement and FPS
Guarantee

We first demonstrate the effectiveness of PilotFish by compar-
ing PilotFish with the three baselines on all combinations of
cloud games and DL models listed in Table 4. By default, the
Constant-Speed baseline is set to 50% of the ideal speed (i.e.,
training the model on the same GPU without co-location).



(a) The 99%-ile FPS normalized to the FPS target (60 FPS). The red line shows the 99-tile FPS of running each game without co-location.

(b) The harvest ratio of idle GPU time of cloud games.

(c) The training wall time of co-located job normalized to training on dedicated GPU system

Figure 13: The 99%-ile FPS, harvest ratio and training wall time of different co-location combinations of games and DL models.

Figure 13 presents the 99%-ile FPS of the cloud games nor-
malized to the FPS target (60 FPS), and the harvest ratio of
idle GPU time. Note that, due to bursty complex frames, the
cloud game may not always maintain at 60 FPS either even
without co-location. Figure 13a shows that PilotFish achieves
almost the same 99%-ile FPS compared to that without co-
location. The three baselines all experienced severe FPS drops.
GameMode drops the most, by up to 78.6% (e.g. SOTTR+RS).
Constant-Speed(50%) and FPS-Based drop from 16.3% to
69.2% and from 20.7% to 66.3%, respectively. In the game
of SOTTR and HIT, all baselines suffer from severe interfer-
ence. Since SOTTR switches scenes multiple times during
the benchmark, its rendering time of frames fluctuates more
severely than the other four games. The three baselines cannot
quickly adapt to the fluctuation thus perform poorly.

Figure 13b shows the harvest ratio in the different combi-
nations. As shown in the figure, PilotFish w/ hard guarantee
harvests 78.56% of idle times on average in all five games
co-located with three DL training tasks (MobileNet, Resnet-
34 and VGG-16) without interfering with the cloud games.
When cloud games are co-located with LSTM, the harvest
ratio drops to 39.03%. Because LSTM contains some large
kernels that run for ∼ 2.4 ms, they may not be scheduled if the
idle GPU time is short with PilotFish’s hard guarantee. Since
the rendering time of game F1 is lower than other games, its
harvest ratio on LSTM is relatively higher than others, which
is 48.43%. With the huge penalty of FPS drop, GameMode

achieves the highest harvest ratio (83% on average) since it
does not control the speed of DL training. The harvest ratios
of the Constant-Speed (50%) and Adaptive-Speed range from
26% to 50% and 11% to 74%. These two baselines not only
harvest less idle GPU time than PilotFish but also degrades
the FPS significantly. They prove the necessity of PilotFish’s
mechanisms to fast and safely schedule DL kernels.

Figure 13c shows the training wall time of the co-located
DL models normalized to training them on dedicated GPU.
The training wall time is almost inversely proportional to
the harvest ratio. Because GameMode occupies more GPU
cycles from games in addition to the idle cycles, it has the
least slowdown at the price of severely affected game FPS.
Because of higher harvesting efficiency, PilotFish’s training
wall time is better than Constant-Speed and Adaptive-Speed
for most models without affecting the FPS of games.

7.3 Dissecting Execution

To demonstrate how cloud game runs when co-located with
DL training, in Figure 14, we show the instantaneous FPS (the
inverse of frame time) fluctuation of RDR2 over time when
co-located with ResNet-34. We select a game segment (50
seconds) during the stable running of the game. We find Pi-
lotFish can always be stable near the original FPS without co-
location. The baselines experience serious FPS fluctuations,
especially GameMode and Constant-Speed since they are not



Figure 14: The instantaneous FPS of RDR2 over time when
co-located with ResNet-34. The FPS is normalized to the
average FPS without co-location.

Figure 15: The rendering quality of PilotFish (left), No co-
location (middle), and GameMode (right). The rendering qual-
ity in GameMode is much worse than the others due to inter-
ference.

adaptive at all. The fluctuated and degraded FPS leads to very
poor experience for players. When FPS drops, some games
with adaptive rendering mechanism will actively reduce the
rendering quality to maintain a smooth playing experience.
Figure 15 compares the rendering quality of PilotFish, no co-
location, and GameMode. PilotFish has the same rendering
quality with running the game without co-location. But the
game co-located with DL training in GameMode reduces the
rendering quality under the bridge due to interference.

7.4 Sources of Improvement
Dynamic Scheduling. Figure 16 shows normalized 99%-
ile FPS and the harvest ratio of the pair (RDR2+RS) under
the different kernel submission speed in Constant-Speed pol-
icy. The kernel submission speed ranges from 3% to 100%
(normalized to the ideal speed without co-location). The right-
most column shows the results of PilotFish for comparison.
As expected, we find that the 99%-ile FPS decreases and the
harvest ratio increases as the submission speed grows from
3% to 100%. We specifically listed the 99%-ile FPS at the
kernel submission speed 3% and 4%. We find the FPS target
can be satisfied only when the kernel submission speed is very
low. When the submission speed is higher than 4%, 99%-ile
FPS begins to drop. Without degrading the 99%-ile FPS, Pi-
lotFish can achieve the same harvest ratio of Constant-Speed
at 80% submission speed.

Figure 17 shows the harvest ratio of HIT under different ren-
dering qualities when co-located with MobileNet and LSTM.

Figure 16: The impact of kernel submission speed in
Constant-Speed v.s. PilotFish.

Figure 17: (HIT+MN/LSTM) the 99%-ile FPS and harvest
ratio of PilotFish with different graphic quality.

Since MobileNet is mainly comprised of small kernels, it is
easier to fit into short idle GPU periods. But the LSTM model
contains some long kernels (∼ 2.4 ms), which requires longer
idle GPU periods. Therefore, reducing the rendering quality
allows LSTM to harvest more GPU cycles from the game
than MobileNet.

The two experiments in Figure 16 and Figure 17 imply the
dynamic scheduling of DL kernels is necessary to handle the
high randomness of game frames and diverse characteristic
of different combinations of game and DL model.

Effective training pause and resume. To verify the need
for the training pause mechanism introduced in Section 6.1,
we disable this mechanism to compare its impact with Pilot-
Fish’s policies of hard guarantee and soft guarantee. Figure 18
shows the 99%-ile FPS (normalized to 60 FPS) and the har-
vest ratio with different pause policies. When using the policy
of hard guarantee, PilotFish achieves the same FPS of that
without co-location. When the pause condition is relaxed
by 5% (3 FPS), the FPS using the policy of soft guarantee
is degraded within the threshold while the harvest ratio is
increased. When disabling the pause mechanism, the FPS
further decreases at the cost of no FPS guarantee. The impact
of the pause policies is different for models: ResNet-34 is
less impacted than LSTM since the computation kernels of
ResNet-34 is much shorter than LSTM. In the worst case, if a
DL training task submits a long-running kernel, the game ren-
dering could be infinitely postponed. Therefore, we suggest
using the policy of soft guarantee when the cluster opera-



Figure 18: The 99%-ile FPS and harvest ratio of PilotFish
with different training pause polices.

Figure 19: (RDR2+RS) the lost progress of DL training.

tor wants to trade a limited interference with a higher GPU
utilization.

Figure 19 shows the lost progress of DL training due to
training pause with the hard guarantee. Compared with the
epoch-level checkpoint in PyTorch whose lost progress is
69.62% on average, PilotFish reduces the lost progress by
4.6 times to 15.04% with the weight backup in the shared
memory pool. LSTM loses more training progress than other
models since it triggers more training pause due to its longer
computation kernel.

8 Scale to Data Center

To evaluate the potential benefit of PilotFish to cloud gaming
service running in a large cluster of GPUs, we use a simple
heuristic cluster-level scheduler to decide which games and
DL training jobs are suitable for co-location on the same GPU,
as shown in Figure 20. The heuristic cluster scheduler collects
the average resource usage of DL jobs and games through
offline profiling. It greedily matches the DL training job with
the game with the DL training job so that the remaining re-
source is minimized. For the DL model using synchronous
data parallel training, the scheduler prefers to deploy each
of its workers to the servers with a similar utilization so that
each worker can run at a similar speed, which can reduce the
synchronization overhead.

We compare this heuristic policy with a random scheduling
policy that co-locates games and DL training models ran-
domly. We simulate a cloud gaming cluster composed of one
thousands Nvidia RTX2060 GPUs. We select ten popular
games as the workload of cloud gaming, including Dota 2,

Global Scheduler

Game1

GPUUtil 40%

CPUUtil 70%

GPUMem 5GB

…

Gaming

Scheduler

DL Job

DL Job-2

GPUUtil 50%

CPUUtil 20%

GPUMem 3GB

isDistributed Yes

BatchSize 128

Scheduling
decisions

GPU server 0

Game1 DL job-1

GPU server 1

Game2 DL job-2
Worker-1

GPU server n

Game3 DL job-2
Worker-2

…

Figure 20: Cluster-level Scheduler.

Figure 21: The variation of
active players on Steam.

Figure 22: The GPU utiliza-
tion in the simulated cluster.

League of Legends, PUBG, CS:GO, Civilization 5, Assas-
sin’s Creed Odyssey, The Division 2, Ashes of the Singularity,
RDR2, and Genshin Impact. The games are launched with
the same probability. The number of running games follows
the active player variation reported by Steam (shown in Fig-
ure 21), which has a strong diurnal pattern. We regard the
peak point in Figure 21 as the situation when all the 1000
GPUs are used by cloud games. For the DL Training work-
loads, we select 750 instances evenly from the five models:
ResNet-34, ResNet-50 [30], VGG-16 [44], MobileNet [31],
and DenseNet [32]. Each model has 100 non-distributed train-
ing instances and 50 distributed training instances.

Figure 22 shows the GPU utilization of no co-location,
random scheduler and the greedy heuristic scheduler. When
there is no co-location, the cloud gaming cluster only has a
GPU utilization of ∼ 40%. The random policy can improve
the utilization to 68.89% due to PilotFish’s efficient execution.
Since the greedy policy is aware of the resource usage pattern
of cloud games and DL training, it can further improve the
cluster utilization to 81.12%. It implies the games and DL
training jobs should be carefully scheduled at the cluster-level
to maximize the benefit of co-location, which is an interesting
future direction.

9 Related Work

General CPU co-location. There has been a large amount
of prior work focusing on improving application QoS and



hardware utilization for CPU co-location. They can be broadly
categorized as (1) profiling-based methods [26, 27, 41, 48, 52]
and (2) partitioning-based methods [39, 53]. The profiling-
based methods, such as Bubble-Up [41], Bubble-Flux [48],
SMiTe [52], uses offline profiling of user-facing services and
batch applications to predict their performance degradation
to avoid contention on shared cache and memory bandwidth.
They periodically adjust the allocation of shared resources
according to the QoS feedback of user-facing services.

However, these techniques would fail on cloud gaming
because they neglect the complex interaction of interference
on different shared resources on GPUs.

General GPU co-location. Several techniques were pro-
posed in the prior work to improve the utilization of GPUs
with co-location. TimeGraph [34] and GPUSync [28] use
priority-based scheduling to guarantee the performance of
real-time kernels. High-priority kernels are executed first
if multiple kernels are launched to the same GPU. GPU-
EvR [35] launches different applications to different stream-
ing multiprocessors (SMs) on one GPU. However, they are
not applicable to our problem because they all rely on the
simulator to synthesize the execution trace of co-located ap-
plications. Laius [50] and Baymax [25] predict the kernel
duration and reorder the kernel based on the QoS headroom
of user-facing queries. But it is difficult to predict the render-
ing frame time of game with a low overhead. AntMan [47]
only co-locates multiple DL training jobs, which cannot han-
dle the unpredictable game rendering. Nvidia Volta MPS
(Multi-Process Service) [42] enables multiple applications
to share a GPU concurrently with static partition, however,
cannot handle the dynamic load of cloud gaming. Moreover,
MPS-based solutions rely on the special hardware feature that
only supports CUDA applications but not games, and is not
applicable to non-Nvidia GPUs.

Co-location of cloud gaming. Specifically for cloud
gaming, several works have been proposed to improve re-
source utilization by co-locating multiple games [37, 43, 49].
vGASA [49] adaptively schedules rendering tasks from multi-
ple games to meet the SLA in a best-effort manner. However,
when a hard SLA guarantee is required, vGASA has to reserve
the resource for the worst cases so that all running games can
meet the SLA at the most complex scenes. As we have shown
in Section 2.2, cloud gaming has a high variance in GPU us-
age. Conservatively guaranteeing the worst case would waste
resources with a significant over-provisioning.

GAugur [36] and dJay [29] dynamically tune the game
settings for the co-located games during gameplay to adapt
to changes of game scenes for improving performance. How-
ever, as we have shown in Figure 4, the frame time and GPU
load in the gaming could fluctuate drastically even within a
short period of time. Frequently changing the game setting is
noticeable to players and could greatly degrade the gaming
experience. This is unacceptable to commercial cloud gaming
services. Instead, the computation of DL training is highly

predictable. PilotFish can accurately predict the execution of
DL kernels and schedule them only when it is safe. This is the
main reason why we claim DL training is the right workload
to be co-located with cloud gaming.

10 Conclusion

Cloud gaming service suffers from low GPU utilization issue
due to the limitation of network and edge devices. Since cloud
gaming utilizes GPUs in a very random manner, existing co-
location solutions for GPU cannot meet the QoS requirement
of cloud gaming. PilotFish addresses this issue by co-design
cloud gaming service and deep learning training framework.
PilotFish can harvest free GPU cycles using DL training with
no interference to cloud gaming. PilotFish achieves this hard
guarantee by (1) quickly capturing the idle GPU periods from
cloud gaming via low-overhead instrumentation to graphic li-
braries (e.g., DirectX); (2) leveraging the predictability of DL
computation to safely schedule DL kernels; and (3) providing
a low-overhead mechanism to pause DL computation when
they could potentially interfere with games. Our evaluation
shows that PilotFish can harvest a significant portion of idle
GPU time of cloud gaming up to 85.1% without affecting
the gaming experience. PilotFish reveals a principled design
to co-locate unpredictable workloads with predictable low-
priority workloads. In addition to co-locating cloud gaming
with DL training, it is interesting to generalize PilotFish’s
solution on other predictable workloads, e.g., scientific com-
puting [22, 50].

Acknowledgments

This work is partially sponsored by the National Natural Sci-
ence Foundation of China (62022057, 61832006, 61872240),
and Shanghai international science and technology collabora-
tion project (21510713600). We thank the anonymous review-
ers for their constructive feedback and suggestions. Zhenhua
Han, Quan Chen and Minyi Guo are the corresponding au-
thors.

References

[1] Amazon appstream. http://aws.amazon.com/
appstream.

[2] As ssd benchmark. https://www.alex-is.de/PHP/
fusion/news.php.

[3] Directx. https://docs.microsoft.com/en-us/
windows/win32/directx.

[4] Event tracing for windows. https://docs.
microsoft.com/en-us/windows/win32/etw/
about-event-tracing.

http://aws.amazon.com/appstream.
http://aws.amazon.com/appstream.
https://www.alex-is.de/PHP/fusion/news.php
https://www.alex-is.de/PHP/fusion/news.php
https://docs.microsoft.com/en-us/windows/win32/directx
https://docs.microsoft.com/en-us/windows/win32/directx
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing


[5] Frameview. https://www.nvidia.com/en-us/
geforce/technologies/frameview/.

[6] Gamemode. https://support.xbox.com/
en-US/help/games-apps/game-setup-and-play/
use-game-mode-gaming-on-pc.

[7] Google stadia. https://stadia.google.com.

[8] Gpuview. https://docs.microsoft.com/
en-us/windows-hardware/drivers/display/
using-gpuview.

[9] Intelgpa. https://software.intel.
com/content/www/cn/zh/develop/tools/
graphics-performance-analyzers.html.

[10] I/o prioritization in windows os.
https://clightning.medium.com/
i-o-prioritization-in-windows-os-6a0637874a52.

[11] Microsoft xbox remote play. https://www.xbox.com/
en-US/consoles/remote-play.

[12] Namespace. https://docs.microsoft.com/en-us/
windows/win32/adsi/namespaces.

[13] Nvenc. https://developer.nvidia.com/
nvidia-video-codec-sdk.

[14] Nvida cuda. https://developer.nvidia.com/
zh-cn/cuda-toolkit.

[15] Nvidia geforce now. https://www.nvidia.com/
en-us/geforce-now/.

[16] Nvidia system management inter-
face. https://developer.nvidia.com/
nvidia-system-management-interface.

[17] Presentmon. https://github.com/GameTechDev/
PresentMon.

[18] Sony playstation now streaming. http://us.
playstation.com/playstationnow.

[19] Steam survey. https://store.steampowered.com/
stats/Steam-Game-and-Player-Statistics.

[20] Vulkan. https://www.vulkan.org/.

[21] Wei Cai, Ryan Shea, Chun-Ying Huang, Kuan-Ta Chen,
Jiangchuan Liu, Victor CM Leung, and Cheng-Hsin Hsu.
A survey on cloud gaming: Future of computer games.
IEEE Access, 4:7605–7620, 2016.

[22] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy W Sheaffer, Sang-Ha Lee, and Kevin Skadron.
Rodinia: A benchmark suite for heterogeneous comput-
ing. In 2009 IEEE international symposium on workload
characterization (IISWC), pages 44–54. Ieee, 2009.

[23] Quan Chen, Zhenning Wang, Jingwen Leng, Chao
Li, Wenli Zheng, and Minyi Guo. Avalon: towards
qos awareness and improved utilization through multi-
resource management in datacenters. In Proceedings of
the ACM International Conference on Supercomputing,
pages 272–283, 2019.

[24] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa
Kannan, Jason Mars, and Lingjia Tang. Prophet: Precise
qos prediction on non-preemptive accelerators to im-
prove utilization in warehouse-scale computers. In Pro-
ceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 17–32, 2017.

[25] Quan Chen, Hailong Yang, Jason Mars, and Lingjia
Tang. Baymax: Qos awareness and increased utiliza-
tion for non-preemptive accelerators in warehouse scale
computers. ACM SIGPLAN Notices, 51(4):681–696,
2016.

[26] Christina Delimitrou and Christos Kozyrakis. Paragon:
Qos-aware scheduling for heterogeneous datacenters. In
ACM SIGPLAN Notices, volume 48, pages 77–88. ACM,
2013.

[27] Christina Delimitrou and Christos Kozyrakis. Quasar:
resource-efficient and qos-aware cluster management.
ACM SIGPLAN Notices, 49(4):127–144, 2014.

[28] Glenn A Elliott, Bryan C Ward, and James H Ander-
son. Gpusync: A framework for real-time gpu manage-
ment. In 2013 IEEE 34th Real-Time Systems Sympo-
sium, pages 33–44. IEEE, 2013.

[29] Sergey Grizan, David Chu, Alec Wolman, and Roger
Wattenhofer. djay: Enabling high-density multi-tenancy
for cloud gaming servers with dynamic cost-benefit gpu
load balancing. In Proceedings of the sixth ACM sym-
posium on cloud computing, pages 58–70, 2015.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[31] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[32] Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross
Girshick, Trevor Darrell, and Kurt Keutzer. Densenet:
Implementing efficient convnet descriptor pyramids.
arXiv preprint arXiv:1404.1869, 2014.

https://www.nvidia.com/en-us/geforce/technologies/frameview/
https://www.nvidia.com/en-us/geforce/technologies/frameview/
https://support.xbox.com/en-US/help/games-apps/game-setup-and-play/use-game-mode-gaming-on-pc
https://support.xbox.com/en-US/help/games-apps/game-setup-and-play/use-game-mode-gaming-on-pc
https://support.xbox.com/en-US/help/games-apps/game-setup-and-play/use-game-mode-gaming-on-pc
https://stadia.google.com
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/using-gpuview
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/using-gpuview
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/using-gpuview
https://software.intel.com/content/www/cn/zh/develop/tools/graphics-performance-analyzers.html
https://software.intel.com/content/www/cn/zh/develop/tools/graphics-performance-analyzers.html
https://software.intel.com/content/www/cn/zh/develop/tools/graphics-performance-analyzers.html
https://clightning.medium.com/i-o-prioritization-in-windows-os-6a0637874a52
https://clightning.medium.com/i-o-prioritization-in-windows-os-6a0637874a52
https://www.xbox.com/en-US/consoles/remote-play
https://www.xbox.com/en-US/consoles/remote-play
https://docs.microsoft.com/en-us/windows/win32/adsi/namespaces
https://docs.microsoft.com/en-us/windows/win32/adsi/namespaces
https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/zh-cn/cuda-toolkit
https://developer.nvidia.com/zh-cn/cuda-toolkit
https://www.nvidia.com/en-us/geforce-now/
https://www.nvidia.com/en-us/geforce-now/
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://github.com/GameTechDev/PresentMon
https://github.com/GameTechDev/PresentMon
http://us.playstation.com/playstationnow
http://us.playstation.com/playstationnow
https://store.steampowered.com/stats/Steam-Game-and-Player-Statistics
https://store.steampowered.com/stats/Steam-Game-and-Player-Statistics
https://www.vulkan.org/


[33] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of large-scale multi-tenant {GPU} clusters
for {DNN} training workloads. In 2019 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 19),
pages 947–960, 2019.

[34] Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and
Yutaka Ishikawa. Timegraph: Gpu scheduling for real-
time multi-tasking environments. In Proc. USENIX
ATC, pages 17–30, 2011.

[35] Haeseung Lee, Al Faruque, and Mohammad Abdullah.
Gpu-evr: Run-time event based real-time scheduling
framework on gpgpu platform. In Proceedings of the
conference on Design, Automation & Test in Europe,
page 220. European Design and Automation Associa-
tion, 2014.

[36] Yusen Li, Chuxu Shan, Ruobing Chen, Xueyan Tang,
Wentong Cai, Shanjiang Tang, Xiaoguang Liu, Gang
Wang, Xiaoli Gong, and Ying Zhang. Gaugur: Quan-
tifying performance interference of colocated games
for improving resource utilization in cloud gaming. In
Proceedings of the 28th international symposium on
high-performance parallel and distributed computing,
pages 231–242, 2019.

[37] Yusen Li, Changjian Zhao, Xueyan Tang, Wentong Cai,
Xiaoguang Liu, Gang Wang, and Xiaoli Gong. Towards
minimizing resource usage with qos guarantee in cloud
gaming. IEEE Transactions on Parallel and Distributed
Systems, 32(2):426–440, 2020.

[38] Tianyi Liu, Sen He, Sunzhou Huang, Danny Tsang,
Lingjia Tang, Jason Mars, and Wei Wang. A bench-
marking framework for interactive 3d applications in the
cloud. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 881–
894. IEEE, 2020.

[39] David Lo, Liqun Cheng, Rama Govindaraju,
Parthasarathy Ranganathan, and Christos Kozyrakis.
Heracles: Improving resource efficiency at scale.
In ACM SIGARCH Computer Architecture News,
volume 43, pages 450–462. ACM, 2015.

[40] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with rtasks. In
14th {USENIX} Symposium on Operating Systems De-
sign and Implementation ({OSDI} 20), pages 881–897,
2020.

[41] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron,
and Mary Lou Soffa. Bubble-up: Increasing utilization

in modern warehouse scale computers via sensible co-
locations. In Proceedings of the 44th annual IEEE/ACM
International Symposium on Microarchitecture, pages
248–259. ACM, 2011.

[42] NVIDIA. Sharing a gpu between mpi processes: multi-
process service(mps). Oct. 2012.

[43] Zhengwei Qi, Jianguo Yao, Chao Zhang, Miao Yu,
Zhizhou Yang, and Haibing Guan. Vgris: Virtualized
gpu resource isolation and scheduling in cloud gaming.
ACM Transactions on Architecture and Code Optimiza-
tion (TACO), 11(2):1–25, 2014.

[44] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[45] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
Lstm neural networks for language modeling. In Thir-
teenth annual conference of the international speech
communication association, 2012.

[46] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
et al. Gandiva: Introspective cluster scheduling for deep
learning. In 13th {USENIX} Symposium on Operat-
ing Systems Design and Implementation ({OSDI} 18),
pages 595–610, 2018.

[47] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,
Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and
Yangqing Jia. {AntMan}: Dynamic scaling on {GPU}
clusters for deep learning. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 20), pages 533–548, 2020.

[48] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia
Tang. Bubble-flux: Precise online qos management
for increased utilization in warehouse scale computers.
In ACM SIGARCH Computer Architecture News, vol-
ume 41, pages 607–618. ACM, 2013.

[49] Chao Zhang, Jianguo Yao, Zhengwei Qi, Miao Yu, and
Haibing Guan. vgasa: Adaptive scheduling algorithm of
virtualized gpu resource in cloud gaming. IEEE Transac-
tions on Parallel and Distributed Systems, 25(11):3036–
3045, 2013.

[50] Wei Zhang, Weihao Cui, Kaihua Fu, Quan Chen,
Daniel Edward Mawhirter, Bo Wu, Chao Li, and Minyi
Guo. Laius: Towards latency awareness and improved
utilization of spatial multitasking accelerators in data-
centers. In Proceedings of the ACM International Con-
ference on Supercomputing, pages 58–68, 2019.



[51] Wei Zhang, Kaihua Fu, Ningxin Zheng, Quan Chen,
Chao Li, Wenli Zheng, and Minyi Guo. Charm: Collab-
orative host and accelerator resource management for
gpu datacenters. In 2021 IEEE 39th International Con-
ference on Computer Design (ICCD), pages 307–315.
IEEE, 2021.

[52] Yunqi Zhang, Michael A Laurenzano, Jason Mars, and
Lingjia Tang. Smite: Precise qos prediction on real-
system smt processors to improve utilization in ware-
house scale computers. In Microarchitecture (MICRO),
2014 47th Annual IEEE/ACM International Symposium
on, pages 406–418. IEEE, 2014.

[53] Haishan Zhu and Mattan Erez. Dirigent: Enforcing
qos for latency-critical tasks on shared multicore sys-
tems. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 33–47, 2016.


	Introduction
	Motivation
	GPU Under-utilization of Cloud Gaming
	Challenges
	Co-location with DL Training

	PilotFish Overview
	Game Loop Instrumentation
	DL Training Scheduler
	Task Executor
	GPU Kernel Execution
	Low-overhead Pause and Resume
	Mitigating Other Resource Contention

	Evaluation of PilotFish
	Experimental Setup
	GPU Utilization Improvement and FPS Guarantee
	Dissecting Execution
	Sources of Improvement

	Scale to Data Center
	Related Work
	Conclusion

