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Abstract—Cloud-based AI infrastructure is increasingly impor-
tant, especially on large-scale distributed training. To improve
its efficiency and serviceability, real-time monitoring of the
infrastructure and profiling the workload are proved to be
the effective approach empirically. However, cloud environment
poses great challenges as service providers cannot interfere with
their tenants’ workloads or touch user data, thus previous
instrumentation-based monitoring approach cannot be applied,
nor does the workload trace collection.

We propose Moneo, a non-intrusive cloud-friendly monitoring
system for AI infrastructure. Moneo is capable of intelligently
collecting the key architecture-level metrics at finer granularity in
real-time without instrumenting or tracing the workloads, which
has been deployed in real production cloud, Azure. We analyze
the results reported by Moneo for typical large-scale distributed
AI workloads from real deployment. Results demonstrate that
Moneo can effectively help service providers understand the
real resource usage patterns of various AI workloads and real
networking requirements, so as to get valuable findings help
improve the efficiency of cloud infrastructure and optimize
the software stack with the consideration of the characteristic
resource usage requirements for different AI workloads.

Index Terms—AI infrastructure, monitor, cloud, distributed
training.

I. INTRODUCTION

Training deep neural network (DNN) models usually re-
quires a long time on a single arithmetic computing device,
resulting in distributed training using multiple devices are pre-
ferred to reduce training time. However, most individual users
can hardly afford to purchase many computing devices like
GPUs themselves. Consequently, cloud-based AI infrastructure
has been popular for conducting distributed training such as
Azure [1], Amazon AWS [2] for flexibility and economy.

However, for cloud-based AI infrastructure, training effi-
ciency is critical, particularly for large-scale distributed train-
ing. Extending training time and cost are the primary concerns,
as model parameters have increased dramatically in recent
years. It takes OpenAI just over a year to double the capacity
of GPT models from 1.5 B to 175 B. The latest GPT-3 model
would require 355 years and 4.6 M dollars to train even with
the single Tesla V100 cloud instance [3].

Even with the most advanced and expensive AI hardware,
we observe a significant decrease in training efficiency as the
number of GPUs increases, as illustrated in Fig.1(a). There
are two fundamental reasons, one is that the software stack is
not optimized sufficiently, and the other is that the hardware
is over-provisioning resulting in unnecessary and expensive
costs. To optimize the efficiency, they first need to know where
the bottleneck is and what is being underutilized. Fortunately,
real-time monitoring and profiling are proved to be the effec-
tive approach empirically to help pinpoint inefficiencies [4].

However, the cloud environment imposes significant chal-
lenges on real-time profiling because service providers can not
interfere with tenants’ workload execution and collect highly-
related information with the users. Thus, the existing tools can
not meet the requirements.

First, instrumentation-based approaches can not be applied
since they will interfere with tenants’ workloads. For instance,
memory usage can be obtained by adding hooks to the code [5]
[6]. NVIDIA CUPTI API [7] requires instrumenting the kernel
in order to collect events and metrics that are used by a variety
of tools including NVProf [8], Nsight [9] and others [10] [11].
Second, the majority of fine-grained profiling tools require
the collection of workload traces. Popular frameworks provide
TensorBoard [10] for tracing the op-level execution timeline on
the GPU. NVIDIA provides performance measurement tools
ranging from the kernel to the application level. [8] [9] [12].
These tools will replay kernels, APIs, and gather workload
traces. We discovered that Nsight [9] can increase the step
time for ResNet50 by more than 50% through experimentation.
Not only do these tools incur significant overhead, but they
also expose users to privacy risks. Third, some existing AI
workload monitors are overly coarse-grained. NVIDIA-smi
[13], nvtop [14] can easily monitor GPU utilization, which
is the percentage of time a kernel is using GPU over the
previous sample period. However, they cannot obtain finer-
grained information contained within GPUs. A GPU contains
dozens of streaming multiprocessor (SM), and GPU utilization
cannot distinguish between only one SM or all SMs in use,



so it cannot effectively reflect the actual use of computing
resources. In comparison, we demonstrate finer-grained metric,
SM utilization, highlighting the proportion of SMs that are
used. A kernel that utilizes all SMs and runs for the duration
of the time interval will have 100% activity. As illustrated in
Fig.1(b), the average GPU utilization for mixture of experts
(MoE) GPT-3 is approximately 90%, while the average SM
utilization is approximately 20%.

(a) ideal vs. real GPT-
2 FP32 speedup with in-
crease in GPUs

(b) GPU utilization vs. SM utilization of
MoE GPT-3

Fig. 1. Experiments of GPT models

To address the aforementioned limitations, we propose
Moneo, a non-intrusive fine-grained real-time monitor that
is effective for cloud-based AI infrastructure. To avoid in-
strumenting individual applications, we collect information at
the architecture level. Rather than collecting traces, we track
communication and computation resource usage. Besides, we
collect metrics at a finer granularity to more accurately and
effectively reflect resource usage. Moreover, a real-time mon-
itor can provide additional benefits. For instance, the majority
of distributed DNN workloads employ the synchronization
method, but this results in the degradation of performance
on one device being propagated to all. Thus, from an end-
to-end perspective, all devices execute at the same speed,
and we cannot differentiate between normal and straggler de-
vices. However, the straggler consumes resources abnormally,
whereas others perform similarly in the same job, as illustrated
in Fig.2. If we can detect it in real-time, we can perform better
GPU resource scheduling to reduce job completion time and
avoid wasting healthy resources, such as replacing the issued
GPU with a new one to continue and repairing the issued GPU.

Fig. 2. Real-time abnormal resource usage

Nevertheless, real-time monitoring still has some chal-
lenges. The GPU contains hundreds of hardware counters and
metrics, which significantly increase the cost of data querying
and transmission. Additionally, too fast collection will impose
significant overhead and stress on the system. To address
these issues, we use data-driven statistical methods to identify
several key metrics about communication and computation and

dynamically adjust the collection frequency to significantly
reduce overhead.

Moneo has been deployed in Azure to monitor fine-grained
resource usage metrics in real-time. Moneo’s data can reveal
the resource usage patterns and assist in understanding the
resource requirements of AI workloads. The resource usage
patterns can help identify underutilized resources, such as
GPU, memory, and network utilization, indicating the direction
for full stack optimization, including arithmetic operators [15],
compilation [16], and communication strategy [17]. Under-
standing the resource requirements of diverse workloads can
guide the design of efficient architecture and future-proof
hardware. Moreover, Moneo provides real-time, graphical an-
alyzers enable users to monitor the health of system and tasks.

Moneo demonstrates its effectiveness in production by its
data from three representative distributed workloads, including
data parallelism, model parallelism, and MoE [18]. Analyzing
these data sheds light on the performance optimization poten-
tial for the application software stack and hardware architec-
ture design. Computing resources and GPU interconnection
are underutilized to a great extent during model training. For
instance, the peak Tensor Core usage is less than 35% and
the maximum NVLink bandwidth is only approximately 10%
of the specification. Additionally, we discover the divergent
networking requirements of distributed workloads, which may
aid in the design of efficient and flexible cloud-based AI
system architectures. For example, model parallelism can be
accomplished using existing network resources, whereas MoE
may require a more powerful and dedicated network.

II. MONEO OVERVIEW

We propose an end-to-end pipeline for collecting fine-
grained counters for AI workloads from AI hardware, scraping
and storing the data in a time-series database, and presenting
them in real-time to end-users. We identify a set of fine-grained
key architecture-level metrics and collect them via hardware
counters with dynamic collection frequency using a service.
Moneo imposes little overhead on target machines, does not
instrument or interfere with AI workloads, and does not collect
user-relevant data.

A. System Architecture

Fig.3 illustrates the system architecture of Moneo includ-
ing three main components, including metrics exporter, data
collector, and analyzer.

a) Metrics Exporter: The metrics exporters are running
on each target compute node and will query hardware or OS
metrics exposed by hardware drivers or Linux kernel in short
periods. They are responsible for exporting these metrics in
real-time as a service. Each node may contain multiple metric
exporters, each of which queries for unique hardware. There
is, for instance, a GPU counter exporter, a network exporter,
and a node exporter for basic operating system metrics such
as CPU and disk. Metric exporters consume very little CPU
resources as background services and do not interfere with
running workloads.
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Fig. 3. Moneo System Architecture

b) Data Collector: The data collectors, which are run
on additional management nodes, are in charge of grabbing
metrics via HTTP from the computing node’s metric exporter
and storing them in the time series database (TSDB). When
the AI cluster grows in size, the data collector can also be
distributed across multiple nodes to ensure high availability
and fault tolerance.

c) Analyzer: We define distinct dashboards for various
metric and analysis categories to enable users to easily observe
insights generated by analyzers.

B. Data-driven Metric Selection

We focus on the metrics for NVIDIA/AMD GPU and
NVIDIA Mellanox InfiniBand, mainly used for computation
and communication during AI workloads. We initially col-
lected all counters available through the System Management
Interface and GPU manager tools, and discovered that there
are several hundred. The system will be burdened by high data
query and transmission costs due to real-time monitoring of
many metrics. However, not knowing which metrics are in-
dicative, we employ data-driven statistical methods to identify
a representative subset.

For further analysis, we collect time series of all metrics
across diverse workloads, as shown in Fig.4. First, some
metrics are almost constant whatever the workloads, so we
can’t learn much from them. In this case, if the time series of
a metric’s variance is below the threshold, it will be filtered out
first. In addition, we find that the times series of some metrics
are very similar so that we can keep just one. Initially, we
tried to calculate the correlation coefficients between different
metrics. In practice, however, metrics are highly correlated
with workload execution, so using correlation coefficients to
compare them may lead to unexpected results. For instance,
the correlation coefficients of even the less similar metric
like metric1 and metric2 in Fig.4 exceed 0.9. Then we use
Euclidean distance to compare similarity of time series with no
obvious shifts. However, the value range of different metrics
may be very different, leading to inaccurate results. Therefore,
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Fig. 4. Examples of metric patterns

we normalize the distance by dividing the maximum value of
the metric. (

n∑
i=1

∣∣∣∣ xi − yi
max {x1, y1, · · · , xn, yn}

∣∣∣∣2
) 1

2

(1)

If the distance is below the threshold, we keep only one metric.

C. Adaptive monitor frequency

One of the characteristics of DNN workload is repetitive
because it repeats almost the same operations in each step.
This means that metric changes may be relatively stable or
have a regular pattern during the execution of a task, so that we
may not always need to collect with the fastest frequency, so
as to reduce the overhead on storage, memory, and network of
the system. As shown in Fig.5(a), we observed most metrics’
peak performance is fairly stable over a short period. 80%
of the values fall between 0.65 and 0.75 around the peak,
and the main reason for the fluctuation is a small amount
of scattered minimum values. In this case, we can ignore
the small number of minimum and focus on the metric peak
performance envelope. Thus if the peak performance is stable
over some time, an appropriate increase in the data collection
interval can also indicate the peak performance during this
period, allowing us to reduce the overhead.

However, as shown in Fig.5(b), the peak performance will
change over time. The sudden changes in metrics are unpre-
dictable. So we dynamically adjust data collection frequency
online. If the current metric’s peak value is stable, we will
double the collection interval i to reduce system overhead. A
small random number will be added to i to reduce the chance
of error. If we detect that the peak value is not stable, we
reduce the collection interval to the minimum.

There are two cases to check if the peak performance is
stable. First, the peak value over the current sampling period
is quite different from the historical peak value. The other
is that although the peak performance in the current sampling
period is similar to the historical peak performance, the values
change dramatically in the current sampling period. Therefore,
outside of the dynamic collection process, we also regularly
sample the metric at the minimum frequency to obtain the
ground truth of metric values in a short period. For the first
case, we calculate the difference between the real peak value of
the current sample and collected peak value since the previous
sampling point in history, and check if it is greater than 10%
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of the historical collected peak. For the second case, we count
the values’ probability density to check if the density around
the peak value is greater than the threshold in the current
sampling window. The sampling period is proportional to the
collection interval. Besides, to avoid errors due to periodicity,
we analyzed the cumulative distribution of stable intervals of
the metrics from a large amount of historical data in advance
and set it to 5 percentile of the stable intervals as the upper
limit of the sampling period time.

As shown in Fig.6, when the peak values are relatively
stable, we slow down the collection frequency to reduce
system overhead. When the peak changes suddenly, we adjust
to the fastest frequency.

III. IMPLEMENTATION AND DEPLOYMENT

A. Monitor Metrics

The collected metrics for GPU and InfiniBand are divided
into six categories, the first three are related to the computation
of GPU, and the last three are used for inter-GPU, intra-node,
or inter-node communications, as shown in the Tab.I. They
are collected through monitoring APIs provided by NVIDIA,
AMD GPU manager tools, and Linux sysfs interface. Other
hardware like disk and CPU will be used for dataset I/O and
data processing during AI workloads training. We leverage
existing metrics from node exporter [19] to monitor them.

B. Deployment and workloads

Moneo has been deployed to monitor the NDv4 instances
in Azure which equip with AMD EPYC 7V12 Processor,
96 CPU cores, 900 GB memory, 8 NVIDIA Ampere A100
Tensor Core GPUs and each GPU is provided with its own
dedicated, topology-agnostic 200 Gbps NVIDIA Mellanox
HDR InfiniBand connection.

There are 3 typical workloads for large-scale distributed
model training in production. The workload of data paral-
lelism is to train GPT-2, BERT-Large, ResNet50, and VGG
models with single precision in PyTorch on a single node
or multiple nodes using data parallelism. The workload of

TABLE I
METRICS AND THEIR MEANINGS USED IN THIS SECTION

Category/ Metric Description

GPU Basics

Common health monitoring for a single GPU,
such as clock frequency,temperature, power, GPU
level utilization, memory error correction code
(ECC), etc.

GPU SM/CU

Streaming multiprocessor (SM) in NVIDIA GPU
or computing unit (CU) in AMD GPU is used
for tensor computation in AI workloads, and each
GPU has many SMs or CUs.

SM Active (%)
The ratio of time SMs are active averaged over
SMs over a time interval. A kernel using all SMs
that runs over the entire time interval is 100%.

Tensor Active (%)
The fraction of cycles Tensor (HMMA/IMMA)
pipe was active. Higher values indicate higher
utilization of the Tensor Cores.

FP64/32/16
Active(%)

The fraction of cycles FP64/32/16 pipe was ac-
tive.

GPU Memory GPU memory is used for storing models and
optimizers.

Mem Active (%)
The ratio of cycles the GPU memory interface
is active sending or receiving data over the time
interval.

NVLink/xGMI
NVIDIA NVLink and AMD xGMI are high-
speed, direct GPU to GPU interconnect inside
one node.

NVLink TX/RX
(GB/s)

The rate of data transmitted/received over
NVLink for each GPU in GB/s over a time
interval.

PCIe PCIe is used for memory copy between GPU
devices and host.

PCIe TX/RX (GB/s) The rate of data transmitted/received over PCIe
for each GPU in GB/s over a time interval.

InfiniBand
NVIDIA Mellanox InfiniBand is used for inter-
node communication with very high throughput
and very low latency.

InfiniBand TX/RX
(GB/s)

The rate of data transmitted/received all Infini-
Band cards in a node in GB/s over a time interval.

model parallelism is to train GPT-3 [20] with 175 B parameters
on 192 GPUs leveraging Megatron-LM [21], an open-source
implementation of model parallelism. When using model
parallelism, tensor parallelism is applied to all GPUs in one
node, and then pipeline parallelism is used to scale up across
nodes. The workload of MoE is to train the GPT-3 MoE model
on 128 GPUs using Fairseq [22], a sequence modeling toolkit
that supports MoE.

Note that Moneo will not log any user-related data concern-
ing user privacy.

IV. EVALUATION

We first simply evaluate Moneo overhead, then show some
valuable findings based on the results reported by Moneo.

A. Moneo Overhead

On 30 different NDv4 machines, we train GPT-2, BERT-
Large, VGG, ResNet, and DenseNet models in PyTorch. The
results indicate that the variance in training throughput with
and without Moneo ranges from -1.28% to 1.8%. And Moneo
consumes no more than 0.1 percent of the CPU and 0.1 percent
of the memory on each machine. As a result, Moneo imposes
minimal overhead on monitored machines and does not affect
the normal execution of workloads.



B. Some findings from data reported by Moneo

1) Underutilized computation resources: We study the
computation resource utilization of various workloads on a
cluster by collecting SM utilization data over one day and
smoothing it per minute. Moneo discovers that over 90%
of the time, the smoothed SM utilization is less than 30%,
indicating a large room for computation resource utilization
improvement.
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Fig. 7. CDF - One minute smoothed SM utilization

Then, we study the computation resource usage patterns
for various models on a single node using data parallelism,
as shown in Table.II. It’s worth noting that Tensor Core
usage in model training is extremely low. However, Tensor
Core is a critical improvement for NVIDIA A100 GPU, as it
enables it to run 10x faster than the V100 on single-precision
[23]. We compared training model performance to an ideal
kernel microbenchmark. According to Fig.8, the ideal kernel
microbenchmark uses up to 90% Tensor Core, while model
training uses up to 35%. Thus Tensor Core is idle during most
of the time of the model training, and there is much space for
more arithmetic operator optimization to be adapted to the
Tensor core’s capabilities.

TABLE II
GPU PROFILING METRICS OF DIFFERENT MODELS ON SINGLE NODE

peak value GPT-2 BERT-Large ResNet50 VGG11
SM active (%) 85.1 88.2 93.3 86.3
Tensor active (%) 23.8 34.7 20.6 24.2
Mem active (%) 60 55.3 20.5 16.6
FP32 active (%) 14.8 23.5 70.7 52.1
NVLink TX/RX (GB/s) 33.1 13.8 3.9 19.4

Fig. 8. Tensor active (%) in microbenchmark, BERT-Large and GPT-2

2) Underutilized GPU interconnection: As shown in Fig.9,
we find another issue that NVLink bandwidth usage in dis-
tributed training is much lower than the specification. Mean-
while, we use a microbenchmark running NCCL all reduce

operation with 8GB message size to validate the accuracy
of measured results. Moneo’s result is similar to the results
reported by NCCL as 235GB/s. Though the peak NVLink
bandwidth should be 300 GB/s per direction [24], it is no
more than 35 GB/s for the model training of GPT-2, BERT-
Large, ResNet50, and VGG11 on a single machine as shown in
Table.II. According to Fig.10, NCCL performance is related to
message size. Thus, the GPU interconnection is significantly
underutilized, which may provide an opportunity to optimize
the collective communication library.

Fig. 9. NVLink bandwidth (GB/s) in microbenchmark, BERT-Large, GPT-2
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Fig. 10. NVLink bandwidth(GB/s) bandwidth of NCCL with message size
from 32KB to 4GB

The results from underutilized GPU-related resource usage
indicate the software may not be optimized enough for the
workloads to fit hardware and point us in the direction for
software stack optimization.

3) Diverse network requirements: We study the commu-
nication traffic and network bandwidth requirements of dis-
tributed workloads.
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Fig. 11. Network and NVLink bandwidth of different distributed workloads

For data parallelism of GPT-2, InfiniBand bandwidth and
NVLink bandwidth are similar and no more than 40 GB/s.
This is because it uses ring all reduce to communicate for
each GPU, so the bandwidth requirements between nodes and
between GPUs inside the node are similar.

For model parallelism of GPT-3, the intra-node of model
parallelism using tensor parallelism still needs high NVLink
bandwidth of about 30 GB/s. However the InfiniBand band-
width is less than 2 GB/s. Because pipeline parallelism only



requires sending activation tensor between layers, the inter-
node network bandwidth requirement for model parallelism is
very low.

For GPT-3 MoE model, NVLink bandwidth is about 35
GB/s for each GPU, and overall InfiniBand bandwidth mea-
sured is over 100 GB/s. Since there is all to all communication
between experts in each GPU, the InfiniBand bandwidth
requirements for 8 GPUs in the node should be 35*8 GB/s
which means that MoE needs a very high network band-
width requirement. We combine SM utilization and InfiniBand
bandwidth to analyze. As shown in Fig.12, the calculation is
partially idle, but the communication is always dense. Thus
computation and communication cannot overlap, indicating
peak network bandwidth provided has a significant effect on
the MoE training performance.

Fig. 12. SM utilization vs. InfiniBand bandwidth of MoE training

Different network bandwidth requirements show that while
existing network configurations can support model parallelism,
MoE requires higher performance and dedicated network
architecture. Therefore, AI infrastructure should consider re-
source requirements of different workloads when designing
system architecture for better efficiency and performance.

V. CONCLUSION

This paper introduces Moneo, a non-intrusive monitor for
cloud-based AI infrastructure. Moneo intelligently collects
several key architecture-level fine-grained resource usage met-
rics in real-time without touching users’ data and workloads.
Moneo can help to identify resource usage patterns and
requirements of diverse AI workloads. Analyzing the results
of typically distributed DNN workloads in production demon-
strate that Moneo can effectively obtain valuable insights
into the optimization space of software, including arithmetic
operators and communication libraries, as well as more ef-
ficient hardware architecture design to meet the networking
requirements of different workloads.
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