Meili: Towards SmartNIC as a Service

Qiang Su Shaofeng Wu Zhixiong Niu
City University of Hong Kong CUHK Microsoft Research
Microsoft Research
Ran Shu Peng Cheng Yongqgiang Xiong
Microsoft Research Microsoft Research Microsoft Research
Chun Jason Xue Zaoxing Liu Hong Xu
City University of Hong Kong University of Maryland CUHK
CCS CONCEPTS | (\PCle
» Networks — Programmable networks; In-network process- : ¥
ing; « Hardware — Networking hardware; ’ DMA ‘
Controller Agent Executors

KEYWORDS
SmartNIC, Hardware heterogeneity

ACM Reference Format:

Qiang Su, Shaofeng Wu, Zhixiong Niu, Ran Shu, Peng Cheng, Yongqiang
Xiong, Chun Jason Xue, Zaoxing Liu, and Hong Xu. 2023. Meili: Towards
SmartNIC as a Service. In ACM SIGCOMM 2023 Conference (ACM SIGCOMM
’23), September 10, 2023, New York, NY, USA. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3603269.3610859

1 INTRODUCTION

The gap between the stagnation of CPU power and the increase in
network bandwidth has promoted a shift towards placing more com-
putation on network hardware [16, 17]. Therefore, SmartNICs have
become prevalent in data centers to serve various cloud applica-
tions, from network functions [15, 17, 22] to high-level applications
like distributed applications and storage [14, 16, 18-21, 23].
Along with the prosperity of the innovations of SmartNIC ap-
plications, the industry is facing two challenges of the current use
in the cloud. First, SmartNICs always feature wimpy and limited
onboard resources despite the diverse hardware architectures [1-
4, 7-13]. Therefore individual SmartNIC cannot conform to the
requirements of all kinds of applications especially when they are
highly dynamic. To address this, hardware vendors are working
on designing more powerful and resourceful SmartNICs, but the
pace of hardware deployment lags behind the rapid evolution of
applications. Second, the sharing of SmartNICs is inefficient, as they
are owned by individual application teams and it requires coordina-
tion of resource usage and workload deployment on a case-by-case
basis. This leads to redundant labor on SmartNIC management and
may slow down the development of SmartNIC-accelerated appli-
cations in production. Moreover, because the cloud provider lacks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACM SIGCOMM 23, September 10, 2023, New York, NY, USA

© 2023 Association for Computing Machinery.

ACM ISBN 979-8-4007-0236-5/23/09...$15.00
https://doi.org/10.1145/3603269.3610859

Resource Manager
Runtime Manager D D D

Traffic Orchestrator

—t § TXIRX | |1
1r =
<=>Data flow <+—> Control flow ¥ Network SmartNICs

Figure 1: Overview of Meili’s architecture.

Meili Controller

the complete vision of SmartNIC clusters, it becomes difficult to
perform typical management tasks, such as resource allocation,
scaling, workload placement and failover.

In this poster, we propose a new paradigm of SmartNIC as a ser-
vice to tackle these challenges. The central thesis of our approach is
to organize the SmartNIC resources as a separate pool, thereby shift-
ing the resource and workload management to the cloud provider.
The workloads can be deployed without coordination among differ-
ent application teams, and their owners also do not need to worry
about resource limitations during development. Furthermore, cloud
providers have a complete view of the SmartNIC cluster, allowing
them to enforce a variety of management policies.

Following this approach, we present a novel system called Meili
to efficiently develop and deploy workloads in heterogeneous Smart-
NIC clusters. We present the preliminary design in this poster,
which aims at making SmartNIC cluster details transparent to devel-
opers and enabling flexible workload development. To do this, Meili
introduces a new programming model that comprises customizable
abstractions for common packet- and socket-based workloads, as
well as heterogeneity-transparent functions, in which Meili imple-
ments and optimizes well-known SmartNIC-accelerated functions
(e.g., Crypto) using heterogeneous hardware architectures, and
exposes hardware-independent APIs. With Meili’s abstraction, a
workload is composed with multiple finer-grained functions, which
can be consolidated on heterogeneous SmartNICs. This leads to
a new problem of finer-grained resource allocation and workload
placement, and we leave this for future work.

2 INITIAL DESIGN

Architectural Overview. The architecture of Meili is depicted in
Figure 1. In the control-plane, Meili runs a Controller Agent (CA)

ACM SIGCOMM 23, September 10, 2023, New York, NY, USA

on each SmartNIC which also talks to a central Meili Controller.
CA runs a Resource Manager and a Runtime Manager to moni-
tor and schedule SmartNIC resource usage and workload status,
synchronizes them with Meili Controller periodically, and config-
ures the data-plane and resource management policies on each
SmartNIC (e.g., resource allocation). Meili Controller collects the
resource and workload states from each SmartNIC, and performs
global workload placement across the SmartNIC cluster to meet
the performance requirements of multiple SmartNIC workloads. In
the data-plane, each workload instance runs in a separate runtime,
which is called an executor in Meili. The Traffic Orchestrator (TO)
on each SmartNIC dynamically manages the traffic to/from the
onboard workloads, utilizing the data-plane policies from CA (e.g.,
load balancing).

Programming abstraction. SmartNIC workloads are generally
built on two fundamental data abstractions: packet and socket, which
mainly corresponds to the operations on the data packets and user
application buffers, respectively. Therefore, Meili defines its abstrac-
tions as packet processing and socket processing, whose behavior can
also be described by user-customized functions (UCFs). A workload
is composed of the abstractions chained via a directed graph.
Packet processing. Packet processing typically involves per-packet
and per-connection operations. As a result, Meili defines two data
structures: 1) Meili_packet, which contains the packet headers, the
payload, and a reference to the per-packet metadata; 2) Meili_flow,
which contains the connection descriptor (e.g., 5-tuple) and the per-
connection metadata. Additionally, UCFs are defined as callback
functions that can access the whole structure and compute the
corresponding metadata. For example, Meili provides the packet
transformation abstraction Meili.pkt_trans(), which allows to
access, compute, and modify the Meili_packet by a UCF, such as
changing the payload size. Other abstractions include packet filter,
flow extraction and flow transformation.

Socket pocessing. Meili’s socket processing abstraction follows the
epoll mechanism, and supports operators for socket registration
and event processing correspondingly. Developers can register a
socket to Meili after connection establishment, allowing Meili to
manage the processing on that socket. Meanwhile, the event pro-
cessing functionality (e.g., EPOLL_IN) can be defined as a UCF. Note
that the socket processing is only supported on SmartNICs with
complete OS stacks.

// User-customized functions
2 Meili_packet decrease_TTL(Meili_packet pkt) {
3 pkt.hdr.TTL = pkt.hdr.TTL - 1;
4 return pkt; 3}
BOOL payload_check(Meili_packet pkt) {
6 // Built-in function
7 return Meili.regex (RULE, pkt.payload); }
BOOL dst_IP_check(Meili_packet pkt) {
9 return ip_equal(DIP, pkt.hdr.dst_ip); }
10 // Meili packet processing abstractions
11 Meili.pkt_trans(decrease_TTL, pkt); // Compute
12 Meili.pkt_flt(dst_IP_check, pkt); // Filter
13 Meili.pkt_flt(payload_check, pkt); // Filter

Listing 1: The pseudocode that decreases the TTL and drops the packets with
specific destination IP address or DPI rule violation.

Heterogeneity-Transparent Function. It is imperative that Meili con-
ceals the heterogeneity of SmartNICs from developers in order to
maintain programming flexibility. To do this, Meili implements and

Q. Su et al.

Value of K 10 100 1000
Baseline 7.62 12.36 25.44
Meili 1.25 1.83 4.67

Table 1: The average latencies (ms) of top-K flow. Baseline and Meili runs over
one SmartNIC and 8 SmartNICs, respectively.

64B 128B 256B 512B 1500B

Baseline 144536 367.75 92.62 11.59 5.79
Meili 21824 21120 16384 8192 2796
Table 2: The IPSec throughput (KPPS) using an FPGA-based AES accelerator.

optimizes a core set of functions that feature well-known SmartNIC-
accelerated semantics (e.g., RegEx, Crypto), and each function may
have multiple implementations on various heterogeneous Smart-
NICs. To provide transparency to developers, Meili also provides
a set of unified hardware-independent APIs and redirects the re-
quests to appropriate implementation based on the performance re-
quirements. For instance, Meili exposes the Meili.AES() function,
which may have different implementations on an FPGA SmartNIC,
a Crypto engine of SoC SmartNICs (e.g., BlueFiled [9]), or even the
onboard CPU cores. Specifically, we allow the developer to con-
figure the shared parameters, which are usually function-specific,
while Meili takes care of configuring hardware-specific parameters.
Listing 1 presents a packet processing example.

3 PRELIMINARY RESULTS

We showcase Meili’s application benefits using 8 NVIDIA BlueField-
2 SmartNICs [9] and 1 Intel FPGA SmartNIC [6].

Top-k flow. We implement a top-k flow workload with 119 LoC,
and the Meili version only needs 7 lines of code change — it encapsu-
lates the top-k logic as a UCF and utilizes the Flow Transformation
abstraction. To evaluate the performance benefits, we generate
10000 flows using DPDK-Pktgen based on the open-source trace
[5] and run the workload on the onboard CPU cores. We measure
the average end-to-end latencies of searching the top 10, 100, 1000
flows across the 8 SmartNICs. Table 1 presents the results. We
observe that Meili reduces the latencies by 80% when utilizing 8
SmartNICs, this demonstrates that the application logic is able to
leverage more onboard CPU cores across the SmartNICs to achieve
lower completion time.

IPSec. We build an IPSec using the encryption accelerator on an
FPGA SmartNIC [6, 17]. The Baseline IPSec uses 1ibssl and runs
on the onboard CPU core, while the Meili version callsMeili.AES()
for encryption and Meili redirects the traffic to the accelerator. The
encryption algorithm is AES-256. Table 2 shows the throughput
when the packet size increases. Observe that Meili achieves ~19x
and ~483x throughput improvement at 64B and 1500 B, respec-
tively, by using the encryption accelerator. The raw performance
benefits are from the FPGA architectural advantages, and Meili
makes it seamless for a SmartNIC workload to attain this gain.

4 ACKNOWLEDGMENT

This work is supported in part by funding from the Research Grants
Council of Hong Kong (11209520).

Meili: Towards SmartNIC as a Service

REFERENCES

(1]

[13]

[14]

AMD Alveo Series. https://www.avnet.com/wps/portal/ebv/products/new-
products/npi/2018/xilinx-u200-alveo-card-a/.

Asterfusion Helium SmartNIC. https://cloudswit.ch/product/marvell-cn9670-
smartnic/.

Azure Catapult. https://www.microsoft.com/en-us/research/project/project-
catapult/.

Broadcom Stingray SmartNIC. https://docs.broadcom.com/doc/PS250-PB.
CAIDA traces. https://www.caida.org/.

Intel Arria 10 product table. https://www.intel.co.id/content/dam/www/
programmable/us/en/pdfs/literature/pt/arria- 10-product- table.pdf.

Intel IPU SmartNIC. https://www.intel.com/content/www/us/en/products/
details/network-io/ipu.html.

Marvel OCTEON 10 SmartNIC. https://www.marvell.com/content/dam/marvell/
en/public-collateral/embedded- processors/marvell-octeon- 10-dpu-platform-
product-brief.pdf.

Mellanox BlueField-2 DPU. https://www.nvidia.com/content/dam/en-zz/
Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf.
Napatech SmartNIC. https://www.napatech.com/products/.

Netronome Agilio SmartNIC. https://www.netronome.com/media/documents/
PB_Agilio_CX_1x40GbE-7-20.pdf.

Pensando Distributed Services Architecture SmartNIC.

//www .servethehome.com/pensando-distributed- services-architecture-
smartnic/.

Silicom FPGA SmartNIC. https://www.silicom-usa.com/pr/4g-5g-products/4g-
5g-adapters/silicom-fpga-smartnic-n5010_series/.

Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im, Marco Canini, Dejan Kosti¢,
Youngjin Kwon, Simon Peter, and Emmett Witchel. LineFS: Efficient SmartNIC
Offload of a Distributed File System with Pipeline Parallelism. In Proc. ACM SOSP,

https:

[15

[16

[17

[18

[19

[20

[21

[22

]

]

ACM SIGCOMM 23, September 10, 2023, New York, NY, USA

2021.

Yanfang Le, Hyunseok Chang, Sarit Mukherjee, Limin Wang, Aditya Akella,
Michael M. Swift, and T. V. Lakshman. UNO: Uniflying host and Smart NIC
offload for flexible packet processing. In Proc. ACM SoCC, 2017.

Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew
Putnam, Enhong Chen, and Lintao Zhang. KV-Direct: High-Performance In-
Memory Key-Value Store with Programmable NIC. In Proc. ACM SOSP, 2017.
Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Rengian Luo, Ningyi Xu,
Yongqiang Xiong, Peng Cheng, and Enhong Chen. ClickNP: Highly Flexible
and High Performance Network Processing with Reconfigurable Hardware. In
Proc. ACM SIGCOMM, 2016.

Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon Peter, and
Karan Gupta. Offloading Distributed Applications onto SmartNICs Using IPipe.
In Proc. ACM SIGCOMM, 2019.

Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo
Phothilimthana. E3: Energy-Efficient Microservices on SmartNIC-Accelerated
Servers. In Proc. USENIX ATC, 2019.

Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu Zhao, Andrew Wei, In Hwan
Doh, and Arvind Krishnamurthy. Gimbal: Enabling Multi-Tenant Storage Disag-
gregation on SmartNIC JBOFs. In Proc. ACM SIGCOMM, 2021.

Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Simon Peter,
Rastislav Bodik, and Thomas Anderson. Floem: A Programming System for
NIC-Accelerated Network Applications. In Proc. USENIX OSDI, 2018.

Yiming Qiu, Jiarong Xing, Kuo-Feng Hsu, Qiao Kang, Ming Liu, Srinivas Narayana,
and Ang Chen. Automated SmartNIC Offloading Insights for Network Functions.
In Proc. ACM SOSP, 2021.

Henry N. Schuh, Weihao Liang, Ming Liu, Jacob Nelson, and Arvind Krishna-
murthy. Xenic: SmartNIC-Accelerated Distributed Transactions. In Proc. ACM
SOSP, 2021.

