
ARK: GPU-driven Code Execution for Distributed Deep Learning

Changho Hwang1,2, KyoungSoo Park1, Ran Shu2, Xinyuan Qu2,†, Peng Cheng2, and Yongqiang Xiong2

1KAIST 2Microsoft Research

Abstract
Modern state-of-the-art deep learning (DL) applications

tend to scale out to a large number of parallel GPUs. Un-
fortunately, we observe that the collective communication
overhead across GPUs is often the key limiting factor of per-
formance for distributed DL. It under-utilizes the networking
bandwidth by frequent transfers of small data chunks, which
also incurs a substantial I/O overhead on GPU that interferes
with computation on GPU. The root cause lies in the ineffi-
ciency of CPU-based communication event handling as well
as the inability to control the GPU’s internal DMA engine
with GPU threads.

To address the problem, we propose a GPU-driven code
execution system that leverages a GPU-controlled hardware
DMA engine for I/O offloading. Our custom DMA engine
pipelines multiple DMA requests to support efficient small
data transfer while it eliminates the I/O overhead on GPU
cores. Unlike existing GPU DMA engines initiated only by
CPU, we let GPU threads directly control DMA operations,
which leads to a highly efficient system where GPUs drive
their own execution flow and handle communication events
autonomously without CPU intervention. Our prototype DMA
engine achieves a line-rate from a message size as small as
8KB (3.9x better throughput) with only 4.3µs of communi-
cation latency (9.1x faster) while it incurs little interference
with computation on GPU, achieving 1.8x higher all-reduce
throughput in a real training workload.

1 Introduction
Modern machine learning (ML) applications tend to har-
ness an increasingly larger number of accelerators (especially
GPUs in this work) [19, 26]. State-of-the-art deep learning
(DL) algorithms often need to scale out to thousands of GPUs
for higher throughput and accuracy [26]. Unfortunately, this
poses a substantial communication overhead to the entire sys-
tem, which harms GPU utilization by delaying or interfering
with numeric computation.

† Now at Horizon Robotics.

The communication overhead mainly arises in two different
aspects. First, collective communication (e.g., all-reduce, split-
and-gather, all-to-all, etc.), which is widely adopted in most of
popular DL algorithms, often splits the data for transfer into
multiple small chunks for pipelining or for sending to multi-
ple different destinations. The chunk size tends to get smaller
as we scale out, which is detrimental to efficient utilization
of networking bandwidth. Second, popular communication
libraries for GPUs such as NCCL [32] and RCCL [5] often
incur a severe I/O overhead on GPU. This is because they
commonly leverage memory-mapped I/O (MMIO) for data
copies between GPUs, which consumes a substantial amount
of GPU resources (i.e., core cycles and L2 cache/DRAM
bandwidth). We observe that concurrent execution of col-
lective communication and numeric computation on GPU
heavily interferes with each other – in our training experiment
with BERT-Large [10], the throughput of parallel computa-
tion drops by 45% while it achieves only 53.6% of the peak
communication throughput (see details in Section 2.3).

Unfortunately, it is challenging for existing systems to ad-
dress both issues (i.e., large transfer delay for small chunks
and I/O overhead on GPU) at the same time. One may avoid
the I/O overhead by offloading the I/O to a hardware DMA
engine instead of employing MMIO with GPU threads. How-
ever, the current DMA engine on commodity GPU is initiated
only by CPU threads, which often enrolls CPU’s control on
the critical path of communication. This incurs the CPU-GPU
synchronization overhead that bloats up the communication
latency, especially detrimental to the throughput of small data
chunk transfer. In fact, one can observe hundreds of µs of com-
munication latency in a popular DL framework as it leverages
the DMA engine. Similarly, if one does not employ the DMA
engine for communication of data chunks, the communication
would suffer from high I/O overhead on GPU.

This paper proposes the GPU-driven system named ARK, a
communication-motivated DL system design. The key idea of
the GPU-driven system lies in autonomous execution control
of GPU code without any control by external devices. This
regime tightly connects computational power of every GPU

1

core across machines by allowing GPU threads to communi-
cate directly with remote GPUs without any external control
signals, which ends up achieving low-latency communica-
tion. At the same time, to avoid the I/O overhead on GPU,
we design a GPU-controlled DMA engine. Specifically, our
custom DMA engine is directly initiated by GPU threads,
which avoids the heavy MMIO without CPU intervention.

Our evaluation shows that our DMA engine prototype is es-
pecially beneficial for small messages, achieving a high com-
munication throughput (3.87x over cudaMemcpy with 8KB
messages) at low latency (9.1x faster over CPU intervention).
Furthermore, it does not interfere with computation on GPU,
which delivers both computation and communication through-
put gains over using MMIO-based libraries [5,32] (1.8x faster
all-reduce in BERT-Large [10] training, see Section 5.3).

To realize the GPU-driven system, we also present an effi-
cient scheduler of autonomous execution on GPU. Our key
observation is that online dynamic scheduling is unneces-
sary as DL workloads are typically deterministic at runtime.
Instead, we present the virtual Cooperative Thread Array
(vCTA) framework that abstracts offline GPU scheduling. Of-
fline scheduling allows eliminating the runtime scheduling
overhead at the back-end, while reusing the existing front-end
interface and GPU kernel implementations.

ARK supports efficient and flexible parallel execution mod-
els for data-, tensor-, and pipeline-parallelisms. Our evalua-
tion demonstrates that ARK delivers substantial performance
gains both in training and inference, achieving 2.5x and 3.6x
throughput improvement, respectively.

2 Background & Motivation
This section explains existing inter-GPU communication tech-
nologies and their limitations.

2.1 Small Data Transfer in Distributed DL
Collective communication consists of several communication
primitives that concurrently exchange the data across multiple
GPUs, which is widely adopted to implement various paral-
lelism methods in distributed DL. Popular use cases include
all-reduce for data-parallelism, split-and-gather for tensor-
parallelism [22, 40], and all-to-all for expert-parallelism [11].
As the number of employed GPUs gets larger, the size of unit
data transfer in collective communication becomes smaller
as it splits the local data into multiple pieces to be delivered
to different GPUs. This small transfer size makes the overall
performance of collective communication highly dependent
on the control plane overhead before and after each data trans-
fer. Unfortunately, we observe that the control plane overhead
either with CPU-controlled or even GPU-controlled commu-
nication is pretty substantial (See Section 2.2 and Section 2.3).
Also, existing workarounds (e.g., tensor fusion [39]) that batch
a large amount of data to avoid small transfers would not com-
pletely address the problem as they trade off computational
throughput by intentionally delaying data transfer.

0
2
4
6
8

10
12
14

4
K

8
K

1
6

K
3

2
K

6
4

K
1
2
8
K

2
5
6
K

5
1
2
K

1
M

2
M

4
M

D
at

a
R

at
e

(G
B

p
s)

Message Size (Bytes)

(a) PCIe v3.

0
50

100
150
200
250

4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

D
at

a
R

at
e

(G
B

ps
)

Message Size (Bytes)

(b) NVLink v3.

Figure 1: Data dependency between GPUs decreases the inter-
GPU data rate due to event handling delays. Solid lines refer
to actual data rate (for sending one message at a time) in Ten-
sorFlow’s CPU-controlled communication crossing a PCIe v3
or a NVLink v3 switch while dashed lines indicate the ideal
data rate without event handling delays.

2.2 External Execution Control Overhead
Existing GPU program execution heavily relies on an external
processor (i.e., CPU) to submit GPU commands for kernel ex-
ecution or data transfer. Unfortunately, this model often incurs
a large overhead due to the delay for command delivery from
the host side to GPU hardware queue (i.e., stream). One can
use the conventional GPU event interface (i.e., cudaEvent) to
hide the delay, but it would also suffer from substantial delay
for event handling. When adopted to inter-GPU communi-
cation, which we call CPU-controlled communication (in
contrast to GPU-controlled communication by NCCL [32]),
we observe that event handling becomes the primary cause
for large communication delay beyond the data transfer itself.

We consider a common communication scenario where
two GPUs have a data dependency – one GPU receives com-
putation results of another GPU to feed them as input to its
own computation. In every data transfer, event handling is
needed to check the dependency between the copy and the
GPU commands around the copy operation, which reduces
the actual data rate between GPUs. Figure 1 compares the
ideal inter-GPU data rate (cudaMemcpy throughput) with the
actual data rate in TensorFlow’s CPU-controlled communi-
cation, which is still used along with NCCL especially for
model-parallelism implementations. We see that the event
handling overhead with cudaMemcpy drastically lowers the
data rate both in the PCIe and NVLink interfaces. We explain
two implementations when GPU A sends data to GPU B.

2.2.1 Runtime Intervention for the Control
CPU can serve as an intermediary to deliver an event between
two communicating GPUs. In fact, if GPUs are located in
different NUMA nodes or on different machines, the runtime
intervention by CPU is required for communication. Also,
some frameworks like TensorFlow implement a generic inter-
face that always uses CPU for GPU event handling regardless
of the placement. Figure 2 illustrates the event handling over-
head due to CPU intervention when GPU A sends its data to

2

CPU
Callback
Thread

event

done?

no

yes
deliver

callback
command

wakeup

CPU
Polling
Thread

GPU A GPU B

done?

run callback
command

event handling
overhead

command:
copy A to B

Figure 2: CPU intervention in inter-GPU event handling.

GPU B that plans to run the next command with the data.
We notice three places for the overhead. First, it is ineffi-

cient for a CPU thread to poll GPU events because the event
interface disallows the CPU thread to monitor multiple events
at the same time. While it takes only ∼3µs for a dedicated
busy-waiting CPU thread to be notified of a triggered GPU
event,2 this approach does not scale when an application
has to run many parallel tasks, which will run many polling
threads. Instead, the event polling loop of TensorFlow uses
only one CPU thread, which incurs a ∼58.3µs of polling gap
on average (see Table 1). Second, it takes time to wake up
the CPU thread that invokes the callback function of the trig-
gered event. In TensorFlow, it takes ∼58.7µs for the callback
thread to acquire the mutex lock from when it is released by
the polling thread. This delay could be reduced to as low as
5µs if both threads are running on the same CPU core, but
co-locating the threads or even merging them into a single
one would increase the event polling interval as well as the
overall processing time. Lastly, it is inefficient for the callback
thread to deliver the computation command to GPU B. De-
livering the event signal to GPU B would take only 2∼3µs if
implemented efficiently,3 but we need to deliver the callback
command binary as well. We can avoid the extra delay if we
deliver the GPU command in advance and trigger it later on
the CPU side, but this is not supported by commodity GPU.

2.2.2 Asynchronous Control
If the GPUs are under the same NUMA node, CPU can reserve
a GPU event to be triggered asynchronously so that GPUs
can directly communicate with each other when the event
occurs. In this case, one can deliver the callback command to
GPU B before the actual event and use the conventional GPU
event interface (i.e. cudaEvent or a higher-level wrapper such
as CUDA Graphs [27]) to trigger the callback command on
GPU B with GPU A’s event. Ideally, this should take as short
as sending a single bit from GPU A to GPU B. However,
we find that triggering a GPU event (∼4µs) and waking up
a dependent GPU command (10∼20µs) are disappointingly
slow – it ends up taking as much as sending the command

2Please refer to the experiment setup in Section 5.
3This is roughly estimated based on that it takes ∼2µs for a GPU thread

to read a 4-byte data on the host DRAM and it takes ∼3µs for a busy-waiting
CPU to read a GPU event.

Overhead Detail Delay (µs)
Initiation

Trigger send ready event on the GPU 3.8
Sync comp. stream and comm. stream 11.6

Completion Check
Event polling gap 58.3
Delay of pthread mutex lock 58.7
GPU kernel launch overhead 19.2

Total 151.6

Table 1: Breakdown of the constant overhead of inter-GPU
data transfer using TensorFlow in Figure 1.

binary to the GPU at runtime. We suspect that this is due to
inefficient hardware implementation on GPU for event han-
dling. In TensorFlow, this overhead contributes to the delay
for initiating a transfer that depends on GPU computation as
shown in Table 1.

2.3 I/O Overhead of GPU-side Control
Since CPU intervention incurs a large overhead, how about
managing the communication with GPU itself? NCCL [32] 4

leverages GPUDirect [31] to enable this approach, which ex-
poses the GPU memory space for peer-to-peer access so that
GPU threads can read/write data to/from another GPU.5 As
GPU threads can directly invoke data copy, they can handle
communication events efficiently without the involvement
of CPU. Since commodity GPU hardware disallows GPU
threads to initiate its own DMA engine, GPU-controlled com-
munication leverages MMIO, which will implicitly conduct
DMA when GPU threads write data on the mapping. Figure 3
compares CPU-controlled and GPU-controlled communica-
tion. The former one (Figure 3a) takes the following steps:
1 CPU is notified when the data is ready, 2 CPU initi-

ates the DMA engine, and 3 DMA copies the data. On the
other hand, GPU-controlled communication with MMIO (Fig-
ure 3b) follows 1 CPU creates a memory map (mmap) of the
destination GPU’s address space prior to runtime execution,
2 the data is ready at runtime, and 3 GPU threads copy the

data into the mmap, which implicitly conducts DMA copy.
Unfortunately, data copying by GPU threads often heavily

interferes with parallel kernel computation, especially due to
L2 cache pollution and warp scheduler operations. Specifi-
cally, a data-copy GPU thread needs to load the data onto its
register file for data transfer, but this pollutes the L2 cache as
one cannot bypass the L2 cache when reading from DRAM on
commodity GPU [34]. It leads to severe performance degra-
dation over initiating DMA directly, as the latter copies the
data on DRAM directly to the I/O bus (PCIe or NVLink).
Additionally, the copying threads frequently issue ’load/store’

4Equally applied to RCCL [5] on AMD GPU as well. For convenience,
we borrow the terms from CUDA or NVIDIA GPUs, which can be easily
converted into corresponding terms in OpenCL or AMD GPUs.

5CPU-controlled communication also leverages GPUDirect for efficient
cudaMemcpy between peer GPUs without crossing the root complex, but its
execution path is different from that of GPU-controlled communication.

3

CPU

GPU (send)

DMA
mem

②

42

GPU (recv)

DMA
mem③

①

(a) CPU-controlled.

③

CPU

GPU (send)

DMA
mem mmap

② 42

GPU (recv)

DMA
mem

①

(b) GPU-controlled MMIO.

DEV

GPU (send)

DMA
mem

42

GPU (recv)

DMA
mem

①
DMA

②

(c) GPU-controlled DMA (this work).

Figure 3: Comparison between CPU-controlled and GPU-controlled communication – the latter has two different approaches,
which leverage (b) MMIO (like NCCL) or (c) directly initiated DMA (this work). DEV refers to any kinds of devices that can
implement our DMA engine.

instructions that drive warp schedulers busy, which makes
other threads for parallel computation yield their clock cy-
cles. Although the affected computation threads are limited to
those that co-run warp schedulers with data-copy threads, they
delay the entire kernel by falling behind the other threads.

To analyze the impact of the contention, we measure the
slowdown of two different GPU kernels that heavily ac-
cess only a specific type of GPU resources each: L2 cache
(1.96 TBps read) and warp schedulers (2.02 IPC),6 respec-
tively (all numbers measured on a V100 GPU), while running
concurrently with NCCL (v2.11.4) 64 MB all-gather7 kernels
using 8x V100 GPUs. We leverage NVIDIA Visual Profiler
(NVVP) and Nsight Compute to verify that (1) the L2 cache
kernel shows near-zero DRAM access and L1 data cache
hit rate and (2) the warp schedulers kernel shows near-zero
L2 cache/DRAM throughput. We have also verified the con-
currency of computation and all-gather kernels and no other
CPU/GPU activities during the experiment. In this experi-
ment, the slowdowns due to L2 cache and warp schedulers
contention are up to 2.4x and 2.0x, respectively, where it
slows down either the computation or the concurrent NCCL
communication (when one side is degraded less, the other
side tends to be impacted more). This result shows that heavy
contention could arise depending on the GPU resource usage
of concurrent computation kernels.

We run a microbenchmark to evaluate the contention of
NCCL all-reduce during data-parallel training of a BERT-
Large [10] model. This model performs 32 MB of all-reduce
at a time, which issues 4 MB data transfer in parallel with
eight GPU workers. On a server with 8x V100 GPUs (con-
nected with a single PCIe switch (16x PCIe v3)), the parallel
computation throughput drops by 45.0% while all-reduce
achieves only 5.0 GBps on average, degraded to 53.6% of the
peak throughput without the interference. On a server with 8x
A100 GPUs (connected with an NVSwitch (NVLink v3)), the
slowdown of all-reduce is even worse – the parallel computa-
tion throughput drops by 14.3% while the NCCL all-reduce
achieves only 30.9% of the peak throughput (49.0 GBps).

6Heavy usage of warp schedulers means frequent instruction fetches, i.e.
large instructions per cycle (IPC). > 99.2% of instructions are FFMA.

7We use all-gather as it only performs communication without any extra
computation such as reduction in all-reduce.

3 ARK Framework Design
In this section, we present the design of ARK, our approach
with the GPU-driven code execution that avoids the commu-
nication overhead on GPU without CPU intervention.

3.1 GPU-controlled DMA Engine
We claim that a GPU-controlled DMA engine (Figure 3c) can
eliminate the communication overhead, which in turn serves
as the basis of our GPU-driven system. The GPU-controlled
DMA engine enables a GPU thread to directly initiate DMA
operations when the data is ready (1), which will immedi-
ately push the data into the I/O bus without wasting GPU
cycles (2). We leverage existing GPUDirect techniques to
expose the GPU’s physical address space to our DMA engine.

While GPU-controlled DMA would deliver low-latency
communication without the MMIO overhead, it is non-trivial
to realize this feature. In fact, an ideal implementation would
be to modify the existing DMA engine on GPU to support
GPU-controlled DMA, but it is infeasible as we cannot up-
date the GPU hardware. Instead, we consider employing an
external device as illustrated in Figure 3c at the cost of extra
communication latency from GPU threads.

Despite of performance benefits, adopting new hardware
for GPU-controlled DMA engine might be costly in many
existing systems. To provide an interim solution, we pursue
a general DMA engine design that can be implemented as
either software or hardware on any hardware platforms (e.g.,
CPU, GPU, SmartNIC, FPGA, etc.) or I/O bus types (PCIe,
NVLink [33], or Infinity Fabric Link (xGMI) [3]). Regardless
of the platform, all implementations need to share the same
runtime interface for GPU kernels. Also, the DMA interface
should support low latency and flexibility while meeting the
different requirements of software and hardware engines.

In this paper, we present both a software implementation
and a hardware prototype of GPU-controlled DMA engine.
Our software engine works over any existing systems without
additional hardware as it leverages host CPU cores – busy-
waiting CPU threads read DMA requests from GPU and initi-
ate DMA accordingly. This design is aligned with the princi-
ple of GPU-driven system as GPU threads directly initiate the
data transfer, while CPU threads only mechanically initiate

4

data copies without any GPU event handling or GPU resource
consumption. Our hardware engine prototype is implemented
on FPGA, which we present to show the potential benefit of
hardware deployment over the software engine. We explain
the details of DMA engine implementations in Section 4.1.

3.2 Loop Kernel & Virtual CTA
GPU-controlled DMA engines would be easily adopted by
existing systems, e.g., NCCL can replace its MMIO with initi-
ating our DMA engines. However, existing systems would not
fully exploit the benefit of GPU-controlled communication
as the communication APIs are launched by CPU – the CPU
intervention barrier still remains between computation and
communication.

To remove this barrier, we propose a GPU-driven code
execution system that runs an entire DL application in a sin-
gle kernel, called a loop kernel. Our key observation is that
online dynamic scheduling is unnecessary as DL workloads
are typically deterministic at runtime. Instead of dynamically
launching GPU kernels with CPU at runtime, our GPU-driven
system automatically merges all kernels into a loop kernel
(one for each GPU) at compile time and launches it only once
at application start. Then, the loop kernel runs continuously
during the entire lifetime of the application. A loop kernel
is generated by our code generator that reads an operational
graph of a DL application and automatically assembles cor-
responding code snippets of GPU operators to build loop
kernel code. We call this code generation as offline scheduling
as all GPU operators are statically distributed across GPU
cores, or Streaming Multiprocessors (SMs), by the code. Of-
fline scheduling lets GPUs efficiently control the application,
which would minimize the event handling overhead for inter-
GPU communication. We discuss several technical details of
the loop kernel in Section 4.2.

Figure 4 shows that the loop kernel design deviates from
the conventional framework for declaring, scheduling, and
executing GPU tasks. In both CPU- and GPU-driven systems,
a GPU operator is commonly defined as a set of multiple
unit operators that each computes a part of the entire output
in the SIMD manner. Meanwhile, both systems declare the
operator differently in the GPU code. The CPU-driven system
declares each unit operator as a Cooperative Thread Array
(CTA)8 and the entire operator as a separate kernel, which
requires launching multiple kernels for multiple operators. In
contrast, our GPU-driven system disallows multiple kernels
as it executes all operators in the single loop kernel. Instead,
it exploits intermediate declaration of unit operators that are
scheduled as part of the CTAs of the loop kernel, which we
call virtual CTAs (vCTAs).

vCTA provides the key abstraction for offline scheduling
in ARK, which enables software-defined SM scheduling. A
vCTA declares the code for a unit operator that is affinitized

8CTA is conceptually and functionally the same as a thread block in
CUDA or a workgroup in OpenCL.

Schedule to SMs

CTAs

Operator on specific inputs

CTA …Kernel 1 CTA

𝐵0 𝐵1 𝐵2 𝐵3

𝐴0
𝐴1
𝐴2

𝐶0 𝐶1 𝐶2 𝐶3
𝐶4 𝐶5 𝐶6 𝐶7
𝐶8 𝐶9 𝐶10𝐶11

𝐵

𝐴 𝐶

Define a unit operator

𝐴𝐵 = 𝐶,

𝐶0 𝐶1 𝐶2 𝐶3
𝐶4 𝐶5 𝐶6 𝐶7
𝐶8 𝐶9 𝐶10 𝐶11

Unit operators

0 1 2 3
4 5 6 7
8 9 10 11

CTA …
Kernel 2 CTA

… … … …

kernel
launch

CTA CTA CTA CTA vCTAs

0 1 2 3
4 5 6 7
8 9 10 11

… … … …

kernel
launch

Run one CTA per SM

CPU-driven System

Loop
Kernel

GPU-driven System

CTA …
Kernel N CTA

①

②

… … … …

… … … …

… … … …

64

64

𝑘
𝑘

𝑘 ∈ ℤ+,
A ∈ ℝ64×𝑘 ,
𝐵 ∈ ℝ𝑘×64,
𝐶 ∈ ℝ64×64. 192

256

128
128

code
declaration

𝐶𝑖 = 𝐴𝑖/4𝐵𝑖%4, 𝑖 ∈ [0, 11]

pack into
a kernel

schedule each
separately

Figure 4: Comparing the procedures for declaring, scheduling,
and executing GPU computation tasks between CPU- and
GPU-driven systems. For instance, the figure shows a matrix
multiplication operator with a 192x256 output, which is split
into 12 unit operators that calculate 64x64 outputs each.

to a specific SM inside the loop kernel. While a CPU-driven
system relies on the non-programmable hardware scheduler
that distributes the CTAs across SMs at kernel launch (1⃝ in
Figure 4), a GPU-driven system implements a custom logic
that distributes vCTAs across CTAs (2⃝ in Figure 4). By
launching one CTA per SM that assigns each CTA to use the
entire resources of an SM, ARK can control the SM-affinity of
vCTAs in a programmable manner. This enables fine-grained
GPU scheduling, which is useful for the GPU-driven system
to implement various computational optimization techniques
such as operator fusion [17, 24, 35].

Migration of existing code to ARK is straightforward as
ARK can reuse existing GPU kernel implementations with
minimal modification: replacing the CTA ID (blockIdx in
CUDA), thread ID (threadIdx in CUDA), SM-local memory
address (shared memory in CUDA), and synchronization func-
tions (e.g., __syncthreads() in CUDA) into corresponding
constants or functions provided by the ARK framework. This
modification guarantees the correctness of the framework
which we have extensively verified.

As shown in Figure 4, offline scheduling writes a code
snippet of each vCTA inside the if-branch of the loop kernel
that only a particular CTA (or SM) enters. Since each CTA
statically executes specific vCTAs that are planned offline, the
GPU actually runs a static while() loop rather than being
controlled dynamically – internal busy-polling loops inside
vCTAs handle runtime events. For example, in Figure 5b, each
of CTA 0 (ctaId is 0) and CTA 1 (ctaId is 1) are assigned
three vCTAs from the operator op_0 and two vCTAs from
the operator op_1. Each CTA uses 256 threads, and vCTAs
from op_0 are executed sequentially by thread 0∼127, while
tasks from op_1 are executed by thread 128∼255 (which im-

5

__device__ void op_0(int vcta_id) {
Add<...>(&BUF[1024], &BUF[9728], &BUF[1024], vcta_id);

}
__device__ void op_1(int vcta_id) {

Matmul<...>(
&BUF[11776], &BUF[9728], &BUF[16384], vcta_id);

}

(a) Operators.
__global__ void loop_kernel(volatile int *iter) {
for (;;) {
// Wait until iteration is requested by the host.
if (threadId == 0) { while (*iter == 0) {} }
__syncthreads();
// Run iterations.
for (int i = 0; i < *iter; ++i) {
if (ctaId == 0) {
if (threadId < 128) { op_0(0); op_0(2); op_0(4); }
else if (threadId < 256) { op_1(0); op_1(2); }

} else if (ctaId == 1) {
if (threadId < 128) { op_0(1); op_0(3); op_0(5); }
else if (threadId < 256) { op_1(1); op_1(3); }

} ...
}
// Inform the host that iterations are done.
if (threadId == 0) { *iter = 0; }
__syncthreads();

}
} (b) Loop kernel.

Figure 5: Example of auto-generated code by the ARK sched-
uler. Note that the code is simplified for readability.

plies that each vCTA is implemented to use 128 co-working
threads). Each vCTA is declared by passing a certain vCTA
ID to a GPU function that defines an operator like in Figure 5a.
The kernel code library of ARK provides the implementation
of common operators (Add or Matmul in the figure) that take
the addresses of data chunks and a vCTA ID as runtime argu-
ments.9 The framework assigns proper offsets to the global
GPU buffer (BUF) for each data chunk, and the vCTA ID
locates a specific part of the chunk that the vCTA deals with.

3.3 Offline Scheduler
Figure 6 shows the scheduling workflow in ARK. Overall, it
reads the DAG of a DL model and generates the correspond-
ing loop kernel code. The ARK scheduler is composed of a
high-level scheduler and a profiling module. The high-level
scheduler implements operator fusion with profiling results
fed by the module. In the initial phase, it builds an OpGraph
that spots all operators and their dependencies in the model,
and generates the code to profile all types of vCTAs that
are needed. Then, the high-level scheduler generates its first
scheduling decision with the profiling results. The decision
may consist of multiple different candidates that need to be
profiled to choose the fastest one, then it iterates the overall
process to compare against multiple other candidates, which
may require additional profiling. The scheduler finally returns
the loop kernel when only a single candidate remains.
Reducing compilations in the profiler. Since the code gener-
ator conducts deterministic scheduling with static vCTA-SM
affinity, it can accurately estimate the performance (i.e. la-
tency and core resource usage) of every scheduling decision
by only profiling the performance of vCTAs, which reduces

9Other arguments such as input data sizes can be fixed during compilation
by passing as template arguments, which we omit here.

ARK Graph File
ARK Scheduler

OpGraph Builder

vCTA set &

buffer info

Kernel Code Library

Code Generator

vCTA info &

code snippets

Compiler

kernel code files to profile (.cu)

Profiler

GPU code binary (.cubin)

High-level Scheduler

profile results

Finished?

return

loop kernel code

Re-schedule

N Y

Figure 6: The ARK scheduler workflow.

the compilation for evaluating scheduling strategies. Say there
are n parallel operators and each operator has m different im-
plementations of the unit operator (or vCTAs),10 then up to
O(mn) different kernels should be compiled to find the best
fusion decision. Since this number could be unreasonably
large, existing works have developed heuristics to focus on
only promising candidates [17].

At first glance, this appears to require only O(nm) kernels
for vCTA evaluations, but it is more complicated as vCTAs
often complete faster when they are run concurrently on the
same SM than when executed serially, which we say they
have joint efficiency. Joint efficiency arises largely due to two
causes: (1) because the L1 cache hit ratio improves as they
access the common memory space running on the same SM,
(2) because the execution of one vCTA hides the memory
access of another (and vice versa) that improves simultaneous
utilization of ALUs and LSUs. The first case is often found
in the vCTAs from the same operator, while the second case
is prevalent in most vCTAs, i.e., almost all vCTAs have the
joint efficiency with each other.

Considering the joint efficiency, in general, we need to
measure the latency when different types of vCTAs co-run
on the same SM, which requires one kernel compilation for
each. Say up to k vCTAs can run simultaneously in one
SM, then the complexity of the number of compilations is
∑

k
i=1

(n
i

)
mi = O(nkmk). In practice, this is much smaller than

O(mn) because k is typically a small constant ≤ 4 due to the
limitation of SM resources (# of maximum threads, bytes of
shared memory, and # of registers).
SM load balancing in the code generator. The code gener-
ator automatically maximizes the SM utilization of the loop
kernel by distributing parallel vCTAs across SMs to balance
their workload. Unfortunately, finding the optimal load bal-
ancing is an NP-hard problem due to the joint efficiency. A
brute-force searching would take unreasonably long due to
the large number of vCTAs to schedule simultaneously.

To tackle this issue, we implement a heuristic load balanc-

10It is common to implement multiple different unit operators for the same
operator, e.g. cuBLAS [30] implements at least 8 different-sized unit matrix
multiplications and choose one depending on the input sizes.

6

ing on SM by leveraging an existing graph partitioning algo-
rithm. Graph partitioning is a popular load balancing problem
that splits a graph into a given number of subgraphs by cutting
several edges, while achieving two goals: (1) balancing the
total node weights of subgraphs and (2) minimizing the total
weights of cut edges. We represent the SM load balancing
problem into a graph partitioning problem. Specifically, we
first group independent vCTAs that need to be distributed
across SMs. Each group is represented as a graph where each
node represents a vCTA and each edge indicates that the con-
necting nodes (i.e. vCTAs) have joint efficiency. The node
weight is the latency of running the vCTA on an SM, and the
edge weight measures joint efficiency, which is calculated as
the fraction of latency reduction when we run both vCTAs
simultaneously in the same SM compared with when we run
both sequentially.

However, it takes too long to run the partitioning because
it makes too many edges – since almost all vCTAs have joint
efficiency with each other, the graph becomes nearly a mesh
connection. To accelerate the algorithm, we adopt hypergraph
representation [2] instead of an ordinary graph, which repre-
sents an equal-weighted mesh connection of multiple nodes
as a single edge called hyperedge. Fortunately, this repre-
sentation substantially reduces the time for code generation
especially when we use a large batch size (which creates a lot
of vCTAs), from tens of hours to only several seconds.

3.4 Limitations
The vCTA-based scheduling takes a whitebox approach that
assumes all operators to be open-sourced, thus ARK cannot
schedule close-sourced binaries such as cuDNN [28] (similar
to Rammer [24]). Also, the offline scheduler of ARK only
supports static computational graphs, which is less flexible
comparing to e.g. PyTorch’s dynamic graph [13]. However,
such a limitation is commonly found in many popular frame-
works including TensorRT [35] and ONNX Runtime [25].

4 Implementation
This section describes technical details of ARK.

4.1 DMA Engine Implementations
We first present our DMA engine interface, and then introduce
our software and hardware DMA engines.

4.1.1 Interface
The key consideration of our interface design is ensuring
high communication performance while keeping the inter-
face consistent across software and hardware platforms. One
key issue lies in the design of a DMA request message from
GPU, which we call a send request (SR), as it has significant
impact on the performance and the implementation complex-
ity. In terms of hardware, receiving a large SR whose size
exceeds the data bus width (64 bits in modern 64-bit proces-
sors) will take multiple cycles, which would require SR buffer

management, reassembly of segmented SRs, and handling
dropped SRs (caused by SR buffer overflow). Implementing
them on hardware would significantly complicate the logic
and increase the spatial cost. As implementing them on hard-
ware would significantly complicate the logic and increase
the spatial cost, we share an 8-byte SR design for both soft-
ware and hardware engines. While it is challenging to hold
the metadata of a general memory copy (two addresses and
a copy length) within 8 bytes, we address this by adopting a
small number of send/recv buffers, which reduces the address
space by replacing general 8-byte addresses with a few bits
of buffer indices. This is feasible thanks to the static nature of
collective communication where the communicating entities
are fixed – it enables offline pre-scheduling of data transfers
so that receivers know which data arrives at which buffer with-
out any additional metadata received at runtime. Meanwhile,
the DMA requests on different buffers are pipelined for low
latency and high throughput.

In terms of software, keeping an SR buffer would be more
efficient as it would otherwise require extra control to pre-
vent overwriting a previous SR. That is, unlike a hardware
implementation where a fully received SR can immediately
trigger the internal DMA pipeline at every cycle, a software
thread could overwrite an unread SR unless the sender (GPU)
coordinates with the receiver (the DMA stack) prior to send-
ing a new SR. Unfortunately, such coordination would incur
an extra delay as the GPU needs to read a remote flag on
the DMA stack before sending an SR. We address this issue
by maintaining a specialized ring buffer for SR, where the
GPU checks only a local replica of the buffer head before
sending an SR, and the replica is asynchronously updated by
the DMA stack. This removes the coordination delay from the
critical path of communication while providing a consistent
SR interface for both software and hardware engines.

4.1.2 Software Engine
Our software engine harnesses CPU as the data plane while
GPU serves as the control plane. We implement a CPU thread
that busy-waits for SRs and invokes cudaMemcpy or RDMA
writes accordingly, i.e., it leverages the existing hardware
DMA engine on the sender GPU. Note that this is different
from CPU-controlled communication as we use CPU only for
data plane operations while the control plane (event handling)
is managed by GPU threads. For high throughput, the busy-
waiting loop drains all SRs in the ring buffer and invoke
copy once for sending on a continuous memory space. Also,
instead of slow cudaEvent, we use MMIO for the CPU-GPU
communication that delivers SR, SC (Send Completion), and
RC (Receive Completion) signals, which takes only 2∼3µs.

Alternatively, the software engine can perform MMIO with
CPU threads instead of initiating the hardware DMA engine,
which can reduce the cudaMemcpy overhead (i.e., sending a
copy request from CPU to the DMA engine on GPU). How-
ever, this approach fails to achieve the line rate in most host

7

GPU

FPGA Internal Transfer Path (ITP)FPGA

PCIe TLP & Hard IP

SR
Decoder

Fetch
Splitter

Fetch
Ctrl SID

Table

Send Arbiter

Send
Composer

Fetch Block Send Block
FPGA Stack

①

②

③

④

⑤

⑥

⑦⑧

Send Ctrl

⑨

Figure 7: Implementation of the hardware DMA engine.

CPU architectures due to their poor throughput of crossing
the PCIe root complex [41, 44]. This issue might be resolved
in the future CPU architectures or by leveraging ARM cores
on SmartNICs [4], which is left as our future work.

4.1.3 Hardware Engine
We implement a custom hardware with FPGA for DMA oper-
ations, which delivers two benefits over our software engine
prototype. First, our hardware engine avoids the extra com-
munication delay incurred by the overhead of cudaMemcpy as
it performs DMA directly. Second, unlike existing hardware
DMA engines on GPU, our custom hardware implements
pipelining of multiple parallel DMA operations. This helps
achieve a high data rate even for sending small data chunks.
Table 2 shows resource usage of our implementation on an
Intel Arria 10 FPGA.

Note that our FPGA prototype is limited to support the
communication between only two GPUs and it does not sup-
port NVLink as there is no programmable hardware (or an
off-the-shelf device) that can connect to NVLink. Instead, we
consider it as a proof-of-concept that demonstrates the ideal
benefit rather than a practical device that can be deployed
on a large scale. A more practical implementation would be
realized by future advances in CPU, GPU, or SmartNICs.

Figure 7 shows the hardware structure of inter-GPU com-
munication stack on the FPGA. Unlike the existing GPU
DMA engine, our DMA stack is designed to pipeline multiple
DMA requests with different SIDs to be handled simultane-
ously. This is implemented by splitting a long-length request
into multiple short-length sub-requests, which prevents head-
of-line blocking and improves the PCIe throughput when
GPU sends multiple different data at the same time. We ex-
plain how each request is processed by the sender- and the
receiver-side stacks, respectively.
Sender side. When the sender stack receives an SR, the Fetch
Block reads the decoded SR and retrieves the requested SID,
which is translated into the physical source GPU address by
looking up the SID Table (1⃝). Using the address, the Fetch
Ctrl fetches one sub-request at a time and it may fetch multiple
times if the copy length is long. Each sub-request reads the
corresponding source data from the GPU and stores it in a

Module Name ALMs BRAM Blocks
Capacity # Capacitry

FPGA Stack 14253 3.34% 188 6.93%
PCIe 1364 0.32% 13 0.48%

Table 2: Resource usage of a single DMA stack.

FIFO buffer of the Fetch Ctrl (2⃝). When the source data is
fully read from the GPU, the stored data and the sub-request
are forwarded to the receiver stack through FPGA Internal
Transfer Path (ITP). (3⃝). After processing all sub-requests
out of an SR, the Fetch Ctrl gives an SC flag to the Send
Arbiter, which will be written on the GPU-side SC flag. (4⃝).
Receiver side. The receiver stack receives the sub-request
from the sender stack and stores the data into a FIFO buffer of
the Send Ctrl (5⃝). At the same time, the SID information in
the sub-request is translated into the physical destination GPU
address (6⃝). The Send Ctrl sends the data to the destination
address, and when it is done, the Send Composer sends an
RC flag to the Send Arbiter, which will be written on the
GPU-side RC flag (7⃝, 8⃝).
Resource usage and limitations. We implement the DMA
stack on Intel Arria 10 FPGA [16]. Table 2 shows that each
stack is implemented at a low cost, using only 14253 ALMs
and 188 M20K BRAMs. Note that our current implementation
supports communication between only two GPUs by directly
connecting the FPGA ITP interfaces of their corresponding
FPGA stacks. Our design considers leveraging DUA [41]
to support routing between multiple stacks (either intra- or
inter-machine), but we leave it as future work.

4.2 Loop Kernel Implementation
This section explains several details of optimizing the loop
kernel performance in ARK.
Per-thread register optimization. GPU kernels often fine-
tune the number of concurrent threads per SM by evaluating
the trade-off between running more threads (gain more par-
allelism) vs. running fewer threads with more registers per
each (gain more computational throughput per thread). So,
the loop kernel also needs to tune it. The ARK scheduler
generates multiple versions of the loop kernel with a different
number of per-thread registers and picks the best-performing
one. Actually, in NVIDIA GPUs, only 32, 64, 128, and 256
are available candidates due to hardware limitation.
Dependency on GPU Architecture. Section 3.2 explains
that ARK launches one CTA per SM, but it may launch two
or more CTAs per SM depending on the GPU architecture.
This is because one CTA may be limited to utilize the en-
tire resources of an SM in some architecture. In such cases,
we need to launch two CTAs per SM to use the entire SM
resources. The ARK scheduler automatically analyzes the
resource requirement of the loop kernel and determines the
number of CTAs per SM accordingly.
Program size. We reduce the program size of a loop ker-
nel by coalescing multiple identical unit operators, e.g., if

8

a model consists of many convolution operators, only sev-
eral unique implementations of convolution will be actually
defined, which are shared across all operators. Thus, the pro-
gram size depends only weakly on the number of operators
in the model. Instead, it is subject to the aggregate size of op-
erator implementations, which is very limited – e.g., cuBLAS
provides only ∼10 instances of a matrix-multiplication imple-
mentation on a single GPU architecture, while a loop kernel
can accommodate over 5000 instances. This should cover an
arbitrary DL program as the size of the matrix-multiplication
implementation is one of the largest among the popular oper-
ators in DL.

5 Evaluation
We evaluate ARK by comparing it with existing DL frame-
works largely in three different aspects. First, the fast inter-
GPU communication of ARK contributes to higher end-to-end
throughput and lower latency of DL applications. Second, the
benefits on communication are obtained without losing the
computational throughput of GPU. Third, ARK has flexibil-
ity to support various parallelism strategies including data-,
tensor-, and pipeline-parallelism.

5.1 Experiment Setup
Software Engine. For experiments that use the software
DMA engine, unless specified differently, we use two Intel
Xeon Gold 6240R CPUs (48 lcores each, 2.40 GHz) and eight
NVIDIA V100 GPUs. We have two NUMA nodes in the ma-
chine but only a single NUMA node hosts all GPUs, i.e. node
0 connects two PCIe v3 switches to its PCIe root complex
and each switch is directly connected to 4 GPUs. For multi-
node experiments, we use four Azure NDv4 SKUs [7] with
32x NVIDIA A100 GPUs in aggregate (8 per node), where
each GPU has dedicated 200 Gbps NVIDIA Mellanox HDR
InfiniBand connection.
Hardware Engine. For experiments that use the hardware
DMA engine, we use an Intel Xeon Gold 5118 CPU (24
lcores, 2.30 GHz), two NVIDIA V100 GPUs, and an Intel
Arria 10 FPGA. Both GPUs and the FPGA are behind the
same PCIe v3 switch. We use the hardware engine only for
experiments in Section 5.2 and Section 5.5.

5.2 DMA Engine Performance
Figure 8 compares the performance of communication be-
tween two GPUs with our DMA engines (G-Drv-S and G-
Drv-H) over a CPU-controlled communication baseline (C-
Drv). C-Drv is our own minimal implementation of a typical
CPU-driven system, but unlike TensorFlow, C-Drv leverages
asynchronous control using cudaEvent when the event is
used only by GPUs, which further reduces CPU-GPU syn-
chronizations to accelerate inter-GPU communication.

We measure the throughput by sending many parallel mes-
sages at the same time and reporting the maximum throughput

0

2

4

6

8

10

12

14

4

1
6

6
4

2
5
6

1
K

4
K

1
6
K

6
4
K

2
5
6
K

1
M

4
M

Message Size (Bytes)

Throughput (GBps)

C-Drv
G-Drv-S
G-Drv-H

0

10

20

30

40

50

60

70

80

4

1
6

6
4

2
5
6

1
K

4
K

1
6
K

6
4
K

2
5
6
K

1
M

4
M

Message Size (Bytes)

Latency (us)

C-Drv
G-Drv-S
G-Drv-H

Figure 8: Performance comparison between the CPU-
controlled communication (C-Drv) and the GPU-controlled
DMA engines (G-Drv-S (software) and G-Drv-H (hardware))
over PCIe v3.

achieved with varying message sizes. For latency measure-
ments, we implement a ping-pong application and report one-
way latency – unlike throughput measurements, this includes
communication event handling delays. This experiment as-
sumes a favorable scenario for the CPU-controlled baseline
where we can adopt the asynchronous control (explained in
Section 2.2.2). In this scenario, a one-way trip requires trigger-
ing only two GPU events and two stream synchronizations.

In the left graph of Figure 8, our software engine (G-Drv-S)
shows the same throughput as that of C-Drv, since both use
cudaMemcpy for the data-plane. In contrast, our hardware en-
gine (G-Drv-H) shows huge throughput improvement, saturat-
ing the bandwidth with only 8 KB messages while G-Drv-S
needs 4 MB messages for saturation. This is because the
hardware DMA engine pipelines processing multiple DMA
requests while cudaMemcpy cannot. This improvement would
be especially beneficial when GPU sends multiple messages
to different destinations at the same time, e.g., all-to-all com-
munication for expert-parallelism, which is popular for scal-
ing out state-of-the-art Transformer-based models [11].

We note that the maximum achieved throughput of
G-Drv-H is 3.68% lower than G-Drv-S. This is because an ex-
ternal DMA stack needs to send both read and write requests
to sender and receiver GPUs, respectively, while the native
DMA engine on the sender GPU needs to send only write
requests. However, as the gap is small, it would not affect the
end-to-end application performance much.

The right graph of Figure 8 shows that the one-way latency
of C-Drv is at least ∼39.3µs on average. In contrast, G-Drv-S
and G-Drv-H achieve 3.5x and 9.1x better latency, respec-
tively. This is because our DMA engines handle the commu-
nication events directly in GPU threads while C-Drv relies on
the cudaEvent interface that suffers from large overhead to
trigger the events and synchronize streams. This improvement
would be especially beneficial when GPUs perform split-and-
gather of intermediate results to distribute the workload, as in
tensor-parallelism [22, 26]. One thing to note about our DMA
engine is that the benefit is obtained with little GPU cycle
consumption. We evaluate this in the following section.

9

0

100

200

300

400

500

1 2 4 8

GPUs

Throughput (sequences/sec)

ARK

PT-TRT

Megatron-LM

0

100

200

300

400

500

600

1 2 4 8

GPUs

Avg. Latency (ms/iteration)

Megatron-LM

PT-TRT

ARK

Figure 9: BERT-Large data-parallel training throughput and
average latency per iteration with varying numbers of GPUs
(sequence length 384, batch size 10, mixed-precision).

5.3 Avoiding Communication Interference
To compare the interference between computation and com-
munication of using NCCL against using our DMA engine,
we evaluate data-parallel training throughput of ARK by train-
ing representative NLP models.
Baselines. PT-TRT accelerates PyTorch [12] by adopting Ten-
sorRT [35], which does not scale out to multiple machines.
Megatron-LM [26] is a PyTorch-based framework that sup-
ports large-scale training of NLP models but we use only for
single-node experiments here. SuperBench [42] provides for-
mal DL benchmarks for system performance evaluation also
based on PyTorch, which we use for multi-node experiments.
All baselines leverage NCCL [32] for communication.
Single Node. Single-node experiments train BERT-Large [10]
model using up to 8x V100 GPUs as shown in Figure 9. The
figure shows that ARK outperforms Megatron-LM and PT-
TRT respectively by 2.46x and 2.12x with 8 GPUs. We find
two reasons for the speedup.

First, NCCL adversely affects the computational through-
put during back-propagation while ARK does not as it lever-
ages DMA instead of employing GPU threads for data copy.
Specifically, 64.5% of the end-to-end gap between ARK and
PT-TRT with 8 GPUs is obtained as NCCL operations slow
down due to the interference of MMIO with back-propagation
computation, showing only 5.0 GBps of all-reduce throughput.
We find that NCCL kernels result in 45.0% of slowdown of
the overall back-propagation computation, an increase from
107.63 ms to 156.02 ms. On the other hand, our DMA en-
gine suffers near-zero interference by initiating DMA directly
instead of using MMIO, achieving 9.10 GBps of all-reduce
throughput (1.82x faster).

Second, ARK performs more efficient computation on
GPU. For example, for about 37.8% of the computation time
of PT-TRT, it executes 1.2 thousands of memory-intensive
kernels per iteration, such as element-wise arithmetic or intra-
GPU data movement. Running these operators as separate
kernels would be inefficient because it would incur unneces-
sary kernel launches and intra-GPU synchronizations. ARK
largely reduces such overhead as it schedules all operators in
a single loop kernel, similar as operator fusion [17, 24, 35].

0

200

400

600

800

1 2 4 8 16 32

GPUs

Throughput (sequences/sec)

ARK

SuperBench

0

50

100

150

200

250

300

350

1 2 4 8 16 32

GPUs

Avg. Latency (ms/iteration)

SuperBench

ARK

Figure 10: GPT-2 data-parallel training throughput and av-
erage latency per iteration with varying numbers of GPUs
(sequence length 384, batch size 4, mixed-precision).

Multiple Nodes. Multi-node experiments train the
GPT-2 [36] model using up to 32x A100 GPUs as shown in
Figure 10. All results use only InfiniBand for communication
(no NVLink) and use the ring reduction algorithm. The
figure shows that ARK outperforms SuperBench by 1.77x
with 32 GPUs. Furthermore, while per-iteration latency of
SuperBench is consistently increasing, the increment in
ARK is only marginal. This shows the efficiency of our
communication stack over NCCL, which minimizes the
interference between communication and computation. We
also find a big computational benefit of ARK even without
communication (when using a single GPU), which is further
explained in the following section.

5.4 Offline Scheduling Evaluation
This section shows that the offline scheduler of ARK can gen-
erate comparable or even better GPU kernels comparing with
existing DL optimization techniques. Rather than claiming
state-of-the-art performance in DL optimization, we intend to
show that the communication gain of our GPU-driven system
does not come up with any computational performance drop.

We compare the inference performance of popular DL
models over different frameworks using a single GPU. The
DL models include image classification (ResNet-50 [14]
and GoogLeNet [43]), object detection (SSD [23]), and NLP
(BERT-Large [10]) models. TensorFlow (TF) is the primary
comparison target of ARK because it supports flexible par-
allelism for DL applications like ARK. We also compare
with TensorFlow-XLA (TF-XLA) [1] that implements au-
tomatic operator fusion in the TF back-end, but it is not al-
ways beneficial to the performance because the fused kernel
might perform worse than using vendor-provided kernels (e.g.
cuDNN) without fusion. Rammer [24] and TensorRT imple-
ment optimized operator fusion that often outperforms TF
or TF-XLA, but they support only limited parallelism. For
example, TensorRT supports only intra-node data-parallelism
by adopting it to accelerate other frameworks like TF and
PyTorch, as TensorRT itself does not support distributed exe-
cution. Nimble [20] presents careful asynchronous control (or
ahead-of-time scheduling) of GPU kernels to reduce runtime

10

Sequence Length = 128

0
2
4
6
8

10
12
14

1 2 8
Batch Size

GoogLeNet (ms)

TF-XLA TF Rammer Nimble TensorRT ARK

0
1
2
3
4
5
6
7

1 2 8
Batch Size

ResNet-50 (ms)

0

5

10

15

20

25

30

1 2 8
Batch Size

SSD (ms)

0

5

10

15

20

25

30

1 2 8
Batch Size

BERT-Large (ms)

Figure 11: Inference latency comparison of popular DL mod-
els over different DL frameworks using a single GPU. All
experiments use mixed-precision computation.

overhead of kernel launch and GPU events. As explained in
Section 2.2.2, however, asynchronous control is limited to
tackle the communication overhead. Nimble also works only
on a single GPU at the moment.

Figure 11 shows that ARK achieves faster single-GPU
inference against existing frameworks in most cases. For in-
stance, ARK shows 1.11x∼3.56x lower latency than Ten-
sorRT, except the case of ResNet-50 with batch size 8 that
is ∼9.90% worse than TensorRT. This is because our matrix
multiplication kernel is slower than the cuDNN [28] kernel
used in TensorRT in this case (note that we implement con-
volution via matrix multiplication). ARK currently does not
implement vCTAs specialized for large matrix multiplications
(one side of the unit operator’s output is larger than 256 ele-
ments), so it is often slower than existing kernels when the
model consists of large matrix multiplications.

We note that the gain of ARK is especially large when the
model consists of many parallel operators like GoogLeNet
or SSD. This is because our high-level scheduler maximizes
overall SM utilization by choosing the best vCTA (or unit
operator) for each parallel operators. Specifically, when a
lightweight operator runs alone in the GPU, we schedule it
to use fine-grained vCTAs so that it utilizes more concurrent
SMs. In contrast, when the GPU is overloaded due to other
co-running operators, we need to use coarse-grained vCTAs
to utilize SMs more efficiently. This is because coarse-grained
vCTAs work on more input data at the same time and thus
have more opportunities to better utilize the parallelism in
an SM. As explained in Section 3.3, the optimization to find
the best-performing vCTAs is easy in the ARK framework
because it accurately estimates the performance with different
vCTAs without running all candidates. We note that other
frameworks do not provide a similar optimization like this.

MHA

MHA FF

FF MHA

MHA FF

FF MHA

MHA FF

FF MHA

MHA

GPU0

GPU1 …

…

Figure 12: MoE model-parallel execution for Transformer
architecture using 2 GPUs, composed of MHA (multi-headed
attention) and FF (feed-forward) modules.

Architecture Message Size (KB) Time Gap (us)
BERT-Large [10] 256 60.9
GPT-3 XL [8] 512 187.4
T5 3B [37] 256 166.9
M4 [6] 256 60.9

Table 3: The message size and the smallest time gap between
transactions for MoE inference. The input sequence length is
128. Time gaps are measured using the ARK framework.

5.5 Tensor-parallel Inference
This section presents the latency improvement with the tensor-
parallel approach called mixture-of-experts (MoE) that effi-
ciently scales up the Transformer [45] architecture, which is
commonly used in many popular NLP models [6, 8, 11, 37].
This method is suggested to scale NLP models to one trillion
of model parameters [11,22], but since we do not have enough
GPUs to run the entire model, we evaluate the tensor-parallel
inference of the model using two GPUs. In real practice, this
is replicated to other GPUs to apply pipeline-parallelism (for
training or inference) and data-parallelism (only for training)
as well at the same time.

Figure 12 illustrates the MoE execution. The message size
and the smallest time gap in-between the exchanges depend
on the model hyperparameters, and some examples are shown
in Table 3. Even though we present only 2-GPU experiments
here, the result would be similar to a larger-scale one because
MoE is designed to send each message only up to a small
constant number (e.g. two in GShard [22]) of selected GPUs,
not to all other GPUs.

We evaluate ARK using the hardware engine with three
different comparison baselines – TF, TF-XLA, and C-Drv.
Note that TensorRT-accelerated TensorFlow (TF-TRT) does
not support model-parallelism, so it is not evaluated here.

Results in Figure 13 shows that ARK outperforms TF and
TF-XLA by 1.66x∼3.48x and 1.25x∼2.31x, respectively. In
terms of only the communication latency, ARK reduces it by
3.68x∼5.65x and 1.77x∼3.31x, respectively. Overall, C-Drv
achieves better communication latencies over TF or TF-XLA,
but its computation is less efficient because it reuses GPU
kernel implementations in ARK but it does not benefit from
ARK scheduler optimization. We also find that the GPU-
driven communication of ARK delivers a substantial speedup
over the CPU-driven communication of C-Drv, as shown in
Section 5.2. We note that ARK computation is slower than

11

0

5

10

15

20
BERT-Large MoE Latency (ms)

Computation
Communication

0

5

10

15

20

25

30
GPT-3 XL MoE Latency (ms)

Computation
Communication

0
10
20
30
40
50
60
70

T5 3B MoE Latency (ms)

Computation
Communication

0

10

20

30

40
M4 MoE Latency (ms)

Computation
Communication

Figure 13: MoE inference latencies with different NLP model architectures (batch size 1, mixed-precision).

TF-XLA in GPT-3 XL and T5 3B. This is because our matrix
multiplication kernel performs worse than TF-XLA in these
cases, as explained in Section 5.4.

5.6 Pipeline-parallel Training
In this section, we train the GPT-3 [8] 6.7B model, which is
the largest variation of GPT-3 that can fit the memory of eight
V100 GPUs via pipeline-parallel training. The model consists
of 32 sequential layers and each GPU trains 4 layers in the
sequential order – GPU 0 reads the input data and runs the
forward-pass of layer 0∼3, and the 16 MB output is passed to
GPU 1, and so on. When GPU 7 completes the forward-pass,
it moves on to the backward-pass of layer 31∼28, and the
16 MB of back-propagating gradient is passed to GPU 6, and
so on. We use the mixed-precision computation and set the
number of pipeline stages to 5, the batch size of each stage to
1, and the sequence length to 2048. ARK uses the emulated
DMA stack in this evaluation.

In this experiment, the training throughputs of TF, TF-XLA,
Megatron-LM, and ARK are 0.35, 0.47, 1.69, and 2.38 se-
quences per second, respectively, i.e. ARK outperforms TF,
TF-XLA, and Megatron-LM by 6.80x, 5.06x, and 1.40x, re-
spectively. In this case, most of the improvement of ARK
comes from the computational efficiency on GPU, as pipeline-
parallel training typically overlaps most of the communication
delay with the computation time. This evaluation shows that
ARK delivers the gain of operator fusion while supporting
flexible parallelism for DL.

6 Future Work & Related Work
We expect that hardware advances in near future would enable
more efficient implementations. For example, implementing
our software DMA engine on SmartNIC would avoid the
throughput issue of the PCIe root complex [44] via direct PCIe
connection with GPUs (e.g., NVIDIA H100 CNX [9] com-
bines GPU with SmartNIC), which enables efficient MMIO
on SmartNIC. NVIDIA has announced their hardware ac-
celerators for inter-GPU communication on SmartNICs (e.g.,
all-to-all engine on NVIDIA BlueField-3 [29]), which implies
that a similar implementation with our hardware engine might
be realized in the future. Additionally, host CPU architectures
in the future may fix the root complex issue, which will en-
able our software DMA engine to replace cudaMemcpy with

CPU-side MMIO, or even more efficiently, DMA engines on
CPU (e.g., Intel I/OAT [15] or AMD PTDMA [21]).

ACE [38] proposes offloading the entire collective com-
munication logic to a hardware accelerator that resides on
intra-machine fabric, which cannot be extended to an external
network (Ethernet, InfiniBand, etc). Our work differs from
ACE as it is generally applicable to any (R)DMA networking
and we can reuse most of existing software logic in popular
collective communication libraries.

GPUnet [18] presents a network socket API set for GPU
threads and leverages CPU intervention to let GPU threads
to trigger DMA. This is inefficient as they add a substantial
intervention overhead especially for small messages because
they do not pipeline processing multiple DMA requests. Its
throughput could be suboptimal as it implements a general
socket interface on GPU while ARK reduces the overhead by
leveraging offline scheduling to remove the metadata to be
managed during runtime.

Nimble [20] accelerates DL execution by minimizing run-
time scheduling overhead of kernels, but it works only on a
single GPU. The proposed methods also cannot help reduce
communication event handling overhead as it still relies on the
CPU-side control using cudaEvent and multi-stream inter-
faces. ARK tackles this by letting GPU threads fully control
all computation and communication tasks.

7 Conclusion
This paper envisions a GPU-driven code execution system
that enables autonomous control of GPU throughout the entire
lifetime of DL applications. We present the GPU-controlled
DMA engine at the heart of the GPU-driven system that en-
ables GPUs to communicate with each other without any ex-
ternal control. To avoid interference between computation and
communication, we design our DMA engine and offline GPU
scheduling to consume little GPU resources for communica-
tion, so that its high communication performance is delivered
without sacrificing computational throughput of GPU. While
our software engine already shows benefits over commodity
hardware, we also present a proof-of-concept of a hardware
engine that shows even higher performance, which indicates
that our system performance would be further improved with
future advances in commodity hardware such as CPU, GPU,
or SmartNIC.

12

Acknowledgements

We appreciate the feedback by our shepherd, Danyang Zhuo,
as well as anonymous reviewers of NSDI’23. This work is in
part support by the ICT Research and Development Program
of MSIT/IITP, Korea, under [2022-0-00531, Development of
in-network computing techniques for efficient execution of
AI applications] and [2018-0-00693, Development of an ultra
low-latency user-level transfer protocol].

References

[1] XLA: Optimizing Compiler for Machine Learning.
https://www.tensorflow.org/xla, 2021. [Online;
accessed Dec 2022].

[2] Yaroslav Akhremtsev, Tobias Heuer, Peter Sanders, and
Sebastian Schlag. Engineering a direct k-way hyper-
graph partitioning algorithm. In Proceedings of the
Workshop on Algorithm Engineering and Experiments
(ALENEX), 2017.

[3] AMD. Introducing AMD CDNA™ 2 Architecture.
https://www.amd.com/system/files/documents/
amd-cdna2-white-paper.pdf, 2021. [Online;
accessed Dec 2022].

[4] AMD. Alveo SN1000 SmartNIC Accelerator Card.
https://www.xilinx.com/products/boards-and-
kits/alveo/sn1000.html, 2022. [Online; accessed
Dec 2022].

[5] AMD. ROCm Communication Collectives
Library (RCCL). https://github.com/
ROCmSoftwarePlatform/rccl, 2022. [Online;
accessed Dec 2022].

[6] Naveen Arivazhagan, Ankur Bapna, Orhan Firat, Dmitry
Lepikhin, Melvin Johnson, Maxim Krikun, Mia Xu
Chen, Yuan Cao, George F. Foster, Colin Cherry, Wolf-
gang Macherey, Zhifeng Chen, and Yonghui Wu. Mas-
sively multilingual neural machine translation in the
wild: Findings and challenges. CoRR, abs/1907.05019,
2019.

[7] Microsoft Azure. ND A100 v4-series - Azure Virtual
Machines. https://learn.microsoft.com/en-
us/azure/virtual-machines/nda100-v4-series,
2022. [Online; accessed Dec 2022].

[8] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,

Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learn-
ers. CoRR, abs/2005.14165, 2020.

[9] Charu Chaubal. Build Mainstream Servers for AI
Training and 5G with the NVIDIA H100 CNX.
https://developer.nvidia.com/blog/build-
mainstream-servers-for-ai-training-and-
5g-with-the-nvidia-h100-cnx/, 2022. [Online;
accessed Dec 2022].

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. In Pro-
ceedings of the Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT), 2019.

[11] William Fedus, Barret Zoph, and Noam Shazeer. Switch
transformers: Scaling to trillion parameter models with
simple and efficient sparsity. CoRR, abs/2101.03961,
2021.

[12] The Linux Foundation. PyTorch. https://pytorch.
org, 2022. [Online; accessed Dec 2022].

[13] The Linux Foundation. How Computa-
tional Graphs are Constructed in PyTorch.
https://pytorch.org/blog/computational-
graphs-constructed-in-pytorch/, 2023. [Online;
accessed Jan 2023].

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2016.

[15] Intel. Fast memcpy with SPDK and Intel® I/OAT DMA
Engine. https://www.intel.com/content/www/
us/en/developer/articles/technical/fast-
memcpy-using-spdk-and-ioat-dma-engine.html,
2017. [Online; accessed Dec 2022].

[16] Intel. Intel® FPGAs - Intel® Arria® 10 FP-
GAs. https://www.intel.com/content/www/us/
en/products/details/fpga/arria/10.html, 2022.
[Online; accessed Dec 2022].

[17] Zhihao Jia, Oded Padon, James J. Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. TASO: optimizing
deep learning computation with automatic generation of
graph substitutions. In Proceedings of the ACM Sympo-
sium on Operating Systems Principles (SOSP), 2019.

[18] Sangman Kim, Seonggu Huh, Xinya Zhang, Yige Hu,
Amir Wated, Emmett Witchel, and Mark Silberstein.
Gpunet: Networking abstractions for GPU programs.

13

https://www.tensorflow.org/xla
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.xilinx.com/products/boards-and-kits/alveo/sn1000.html
https://www.xilinx.com/products/boards-and-kits/alveo/sn1000.html
https://github.com/ROCmSoftwarePlatform/rccl
https://github.com/ROCmSoftwarePlatform/rccl
https://learn.microsoft.com/en-us/azure/virtual-machines/nda100-v4-series
https://learn.microsoft.com/en-us/azure/virtual-machines/nda100-v4-series
https://developer.nvidia.com/blog/build-mainstream-servers-for-ai-training-and-5g-with-the-nvidia-h100-cnx/
https://developer.nvidia.com/blog/build-mainstream-servers-for-ai-training-and-5g-with-the-nvidia-h100-cnx/
https://developer.nvidia.com/blog/build-mainstream-servers-for-ai-training-and-5g-with-the-nvidia-h100-cnx/
https://pytorch.org
https://pytorch.org
https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/
https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/
https://www.intel.com/content/www/us/en/developer/articles/technical/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://www.intel.com/content/www/us/en/products/details/fpga/arria/10.html
https://www.intel.com/content/www/us/en/products/details/fpga/arria/10.html

In Proceedings of the USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), 2014.

[19] Young Jin Kim, Ammar Ahmad Awan, Alexan-
dre Muzio, Andrés Felipe Cruz-Salinas, Liyang Lu,
Amr Hendy, Samyam Rajbhandari, Yuxiong He, and
Hany Hassan Awadalla. Scalable and efficient moe
training for multitask multilingual models. CoRR,
abs/2109.10465, 2021.

[20] Woosuk Kwon, Gyeong-In Yu, Eunji Jeong, and Byung-
Gon Chun. Nimble: Lightweight and parallel GPU task
scheduling for deep learning. In Proceedings of the
Advances in Neural Information Processing Systems
(NeurIPS), 2020.

[21] Michael Larabel. AMD PTDMA Driver Landing
For Linux 5.15 After Two Years In The Works –
Phoronix. https://www.phoronix.com/scan.php?
page=news_item&px=AMD-PTDMA-For-Linux-5.15,
2021. [Online; accessed Dec 2022].

[22] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. CoRR, abs/2006.16668, 2020.

[23] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott E. Reed, Cheng-Yang Fu, and Alexan-
der C. Berg. SSD: single shot multibox detector. In
Proceedings of the European Conference on Computer
Vision (ECCV), 2016.

[24] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with rtasks. In
Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2020.

[25] Microsoft. ONNX Runtime. https://onnxruntime.
ai/, 2023. [Online; accessed Jan 2023].

[26] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia.
Efficient large-scale language model training on GPU
clusters. CoRR, abs/2104.04473, 2021.

[27] NVIDIA. Using NCCL with CUDA Graphs.
https://docs.nvidia.com/deeplearning/nccl/
user-guide/docs/usage/cudagraph.html, 2020.
[Online; accessed Dec 2022].

[28] NVIDIA. CUDA Deep Neural Network (cuDNN).
https://developer.nvidia.com/cudnn, 2021. [On-
line; accessed Dec 2022].

[29] NVIDIA. NVIDIA BlueField-3 DPU – Pro-
grammable Data Center Infrastructure On-a-Chip.
https://www.nvidia.com/content/dam/en-zz/
Solutions/Data-Center/documents/datasheet-
nvidia-bluefield-3-dpu.pdf, 2021. [Online;
accessed Dec 2022].

[30] NVIDIA. cuBLAS. https://developer.nvidia.
com/cublas, 2022. [Online; accessed Dec 2022].

[31] NVIDIA. GPUDirect. https://developer.nvidia.
com/gpudirect, 2022. [Online; accessed Dec 2022].

[32] NVIDIA. NVIDIA Collective Communications Library
(NCCL). https://developer.nvidia.com/nccl,
2022. [Online; accessed Dec 2022].

[33] NVIDIA. NVLink & NVSwitch: Fastest HPC Data
Center Platform. https://www.nvidia.com/en-us/
data-center/nvlink/, 2022. [Online; accessed Dec
2022].

[34] NVIDIA. PTX ISA – Cache Operators. https:
//docs.nvidia.com/cuda/parallel-thread-
execution/index.html#cache-operators, 2022.
[Online; accessed Dec 2022].

[35] NVIDIA. TensorRT SDK. https://developer.
nvidia.com/tensorrt, 2022. [Online; accessed Dec
2022].

[36] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners. OpenAI blog,
1(8):9, 2019.

[37] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. CoRR,
abs/1910.10683, 2019.

[38] Saeed Rashidi, Matthew Denton, Srinivas Sridharan, Su-
darshan Srinivasan, Amoghavarsha Suresh, Jade Nie,
and Tushar Krishna. Enabling compute-communication
overlap in distributed deep learning training platforms.
In Proceedings of the ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA), 2021.

[39] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. CoRR,
abs/1802.05799, 2018.

[40] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language
models using model parallelism. CoRR, abs/1909.08053,
2019.

14

https://www.phoronix.com/scan.php?page=news_item&px=AMD-PTDMA-For-Linux-5.15
https://www.phoronix.com/scan.php?page=news_item&px=AMD-PTDMA-For-Linux-5.15
https://onnxruntime.ai/
https://onnxruntime.ai/
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/cudagraph.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/cudagraph.html
https://developer.nvidia.com/cudnn
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/nccl
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

[41] Ran Shu, Peng Cheng, Guo Chen, Zhiyuan Guo, Lei Qu,
Yongqiang Xiong, Derek Chiou, and Thomas Mosci-
broda. Direct universal access: Making data center
resources available to FPGA. In Proceedings of the
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2019.

[42] SuperBench. SuperBench Documentation. https:
//microsoft.github.io/superbenchmark/, 2022.
[Online; accessed Dec 2022].

[43] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott E. Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich. Go-
ing deeper with convolutions. CoRR, abs/1409.4842,
2014.

[44] Nathan R Tallent, Nitin A Gawande, Charles Siegel, Ab-
hinav Vishnu, and Adolfy Hoisie. Evaluating on-node
gpu interconnects for deep learning workloads. In Inter-
national Workshop on Performance Modeling, Bench-
marking and Simulation of High Performance Computer
Systems (PMBS), 2017.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Pro-
ceedings of the Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2017.

15

https://microsoft.github.io/superbenchmark/
https://microsoft.github.io/superbenchmark/

	Introduction
	Background & Motivation
	Small Data Transfer in Distributed DL
	External Execution Control Overhead
	Runtime Intervention for the Control
	Asynchronous Control

	I/O Overhead of GPU-side Control

	ARK Framework Design
	GPU-controlled DMA Engine
	Loop Kernel & Virtual CTA
	Offline Scheduler
	Limitations

	Implementation
	DMA Engine Implementations
	Interface
	Software Engine
	Hardware Engine

	Loop Kernel Implementation

	Evaluation
	Experiment Setup
	DMA Engine Performance
	Avoiding Communication Interference
	Offline Scheduling Evaluation
	Tensor-parallel Inference
	Pipeline-parallel Training

	Future Work & Related Work
	Conclusion

