
SegaNet: An Advanced IoT Cloud Gateway for Performant and
Priority-Oriented Message Delivery

Yeonho Yoo
Korea University, Microsoft Research

Zhixiong Niu
Microsoft Research

Chuck Yoo
Korea University

Peng Cheng
Microsoft Research

Yongqiang Xiong
Microsoft Research

ABSTRACT
With the tremendous growth of IoT, the role of IoT cloud gate-
ways in facilitating communication between IoT devices and the
cloud has become more important than ever before. Most previ-
ous studies have focused on developing interoperability between
IoT and cloud to accommodate various radio protocols. However,
they have often neglected the performance aspect of the IoT cloud
gateway, leaving users with limited options: either purchasing mul-
tiple gateways or connecting only a small number of IoT devices.
Through our comprehensive measurements and analysis, we iden-
tified five key issues in IoT cloud gateways related to high latency,
CPU bottlenecks, inefficient network stacks on ARM, substantial
encryption overhead, and the lack of priority support. To address
these issues, we propose a new IoT cloud gateway - SegaNet. We
carefully design with 1) multiple agents management, 2) efficient
TLS encryption, and 3) priority-oriented message delivery. Our
prototype evaluation shows up to 16.7× lower latency and 4.5×
lower CPU consumption than gateways of the existing IoT-cloud
ecosystem.

CCS CONCEPTS
• Networks → Application layer protocols; • Hardware →
Sensor applications and deployments.

KEYWORDS
Internet of Things, Cloud, IoT cloud gateway, TLS, Message protocol
ACM Reference Format:
Yeonho Yoo, Zhixiong Niu, Chuck Yoo, Peng Cheng, and Yongqiang Xiong.
2023. SegaNet: AnAdvanced IoTCloudGateway for Performant and Priority-
Oriented Message Delivery. In 7th Asia-Pacific Workshop on Networking
(APNET 2023), June 29–30, 2023, Hong Kong, China. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3600061.3600072

1 INTRODUCTION
In recent years, the Internet of Things (IoT) has played a vital role
in propelling the progress of smart industries [6], smart homes [40],
and smart factories [7]. As reported by Statista [39] and IDC [19],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
APNET 2023, June 29–30, 2023, Hong Kong, China
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0782-7/23/06. . . $15.00
https://doi.org/10.1145/3600061.3600072

the number of IoT devices reached 11.28 billion by 2021, and this
figure is projected to rise to 29.43 billion by 2030. Moreover, the
volume of data generated by IoT devices is anticipated to reach
73.1 zettabytes by 2025. To manage the vast number of devices
and data, public cloud platforms like Azure [29] and AWS [2] have
introduced IoT solutions for device management, data monitoring,
aggregation, storage, and business intelligence, incorporating AI.
Typically, users rely on cloud services to manage IoT devices and
collect data from them via the Internet.

However, typical IoT devices are highly energy-efficient and
compact in size, generally utilizing radio protocols engineered for
low-power and lossy networks (LLNs) [6, 36, 43], and thus cannot
directly access the Internet. A prevalent solution is the IoT cloud
gateway, an intermediary device that connects IoT devices with
the cloud [4]. These gateways run IoT applications (referred to as
agents) and execute various functions on behalf of both IoT devices
and the cloud. As each device possesses unique characteristics, it is
typically more effective to run separate agents. However, given that
IoT cloud gateways are often machines with resource-constrained
specifications, increasing the number of agents presents a signifi-
cant challenge.

Numerous studies have approached the development of connec-
tivity between IoT and cloud from various perspectives, and they
can also contribute to the advanced IoT cloud gateway. For instance,
TinyNet [11] facilitates interoperability between radio protocols
and TCP/IP. Gatescatter [22] utilizes backscatter technology to
modulate radio signals into Wi-Fi signals for internet connectivity.
Safronov et al [36] proposed gateways to provide application in-
teroperation and break away from the existing Internet protocol.
LoRaX [44] allows gateways to use both high-bandwidth and low-
data rate networks to provide wide Internet access. Despite these
advancements, there remains a scarcity of research specifically ad-
dressing how IoT cloud gateways can effectively interconnect a
large number of IoT devices and cloud platformswithin an IoT-cloud
ecosystem.

As the number of IoT devices in our surroundings continues to
grow significantly, their performance becomes increasingly criti-
cal. With our extensive measurements, we identify five key issues
regarding the performance of IoT cloud gateway. First, IoT cloud
gateway suffers high latency when handling a large number of IoT
devices (§3.1). Second, IoT cloud gateway undergoes CPU bottle-
necks when delivering messages from a large number of devices
(§3.2). Specifically, as the number of IoT devices increases from 1
to 256, the message latency and CPU usage grow up to 1255× and
19.6×, respectively. Third, performance degradation is attributed to
the lack of consideration for architectural differences (§3.3). Fourth,

https://doi.org/10.1145/3600061.3600072
https://doi.org/10.1145/3600061.3600072

APNET 2023, June 29–30, 2023, Hong Kong, China Y. Yoo et al.

data encryption overhead for communication with the cloud is
significantly high (§3.4). Lastly, Depending only on the existing
message protocol, priority-based message delivery is not guaran-
teed (§3.5).

To address these challenges,we introduce SegaNet,a new IoT
cloud gateway designed to enhance the scalability of cloud-
connected IoT devices on a large scale.SegaNet employs three design
decisions to resolve the aforementioned issues. First, to alleviate
network stack overhead on ARM, SegaNet assigns multiple agents
that transmit each IoT device’s messages to be mapped to a desig-
nated core (§4.1). Second, to reduce excessive encryption overhead,
message batching is performed (§4.2). Finally, SegaNet presents a
method for prioritizing message delivery, which is not provided by
existing message protocols (§4.3).

Our prototype of SegaNet is implemented with key components,
reception manager and SegaNet agent, and operating based on
MQTT. Our prototype evaluation is conducted on the Raspberry Pi
4, revealing up to 16.7× faster latency and 4.5× lower CPU usage
compared to existing IoT cloud gateways when delivering messages
from numerous devices. SegaNet also demonstrates the ability to
prioritize message delivery while ensuring seamless compatibility
with existing message protocols such as MQTT.

2 BACKGROUND AND CHALLENGES
In this section, we will examine the significance of IoT gateways,
review current IoT gateway solutions, and explore the challenges
that users are facing.

2.1 Connectivity between IoT and cloud
At present, IoT devicesmainly rely on radio protocols engineered for
LLNs, such as IEEE 802.15.4, Bluetooth Low Energy (BLE), and LoRa,
to achieve remarkably small sizes and exceptional energy efficiency.
The public cloud acts as a platform for supplementary data storage,
processing, and business intelligence. Furthermore, it can transmit
alerts to users in response to particular incidents. Although the
cloud employs lightweight protocols like MQTT and AMQP for IoT,
TCP/IP communication required for Internet connectivity proves
to be a considerable burden for small and resource-constrained IoT
devices. Previous studies have improved IoT devices’ networking
stacks to address the interoperability issue between LLNs and the
Internet networks (e.g., IPv4 and IPv6) [11, 24, 36, 38]. Since IoT
devices have already been released with limited resources, it is
difficult to apply their approaches in reality.

2.2 IoT cloud gateway
The most widely-used method to connect IoT and cloud is the use
of an additional device called IoT cloud gateway. This device has
the capability to handle both a specific radio protocol (e.g., LoRa,
LoRaWAN, 802.15.4) and Internet connectivity [6, 36]. IoT cloud
gateway runs multiple agents (e.g., message client applications) to
receive and transmit messages between IoT devices and cloud. Addi-
tionally, the IoT cloud gateway runs as many agents as the number
of connected IoT devices. Therefore, IoT devices can connect in-
dependently to the cloud, with each IoT device setting different
message topics or different QoS. Moreover, IoT cloud gateways

1 4 16 64 256
0

50

100
1000

6000

11000

Number of IoT devices

99
%

ta
il

la
te

nc
y

(
m

s)

Figure 1: Message deliver
latency.

1 4 16 64 256
0

100

200

300

400

Number of IoT devices

T
ot

al
C

P
U

U
sa

ge
(%

) KernelUser

Figure 2: Total CPU usage.

are popular with cloud platforms because they can offload vari-
ous functions such as data analysis, machine learning, and data
pre-processing to the IoT cloud gateway.

2.3 Challenges of IoT cloud gateway
Existing IoT cloud gateways face scalability challenges, particularly
regarding the number of supported LLNs protocol types and con-
nected IoT devices. While the former can be addressed by studies
such as TinyNet [11], which has developed an L2.5 stack for an IoT
gateway, the latter issue remains unresolved. If this issue persists,
customers may need to purchase multiple gateway devices to scale
out the messages, which has led to redundant investments and
additional scale-out solutions [11, 22]. In addition, there are some
challenges that degrade the performance of IoT cloud gateways as
follows.

First, for the IoT environment, low power consumption of devices
is essential, which is why an architecture designed to efficiently
consume energy, such as ARM is widely used [3]. However, this dis-
tinction can cause performance degradation [20, 32]. Furthermore,
network acceleration techniques such as SmartNIC or DPDK cannot
be applied to IoT cloud gateways, which are generally resource-
constrained and inexpensive [27]. As a result, software-only design
is necessary.

Second, data transmission over the Internet to the cloud requires
security authentication, and IoT devices have to verify their certifi-
cate to establish a secure connection and encrypt data via Transport
layer security (TLS) to the cloud. However, the operations such as
TLS handshake and data encryption cause significant overhead [35].
This can severely degrade the performance of IoT cloud gateways
when the number of IoT devices increases. Since security guaran-
tee is indispensable in the IoT-cloud ecosystem, balancing security
overhead and system performance is a key challenge.

Lastly, there is no priority consideration that the IoT cloud gate-
way can have on different message transmission latencies. The
IoT cloud gateway is not only responsible for processing as many
messages as possible from multiple devices simultaneously but also
has to satisfy each requirement (e.g., latency, reliability). For ex-
ample, in a smart home scenario, sensor data for a fire accident
requires short latency, whereas light bulb sensor data does not.
Most IoT cloud gateways process messages in a first-in-first-out
manner or depend on the priority policy of the message protocols
(e.g., HTTP/2, MQTT) [46]. We will discuss these challenges in
more detail in the next section (§3).

3 MOTIVATING EXPERIMENT AND ANALYSIS
This section outlines the results of our comprehensive measure-
ments of an IoT cloud gateway in transmitting messages between

SegaNet APNET 2023, June 29–30, 2023, Hong Kong, China

0.0 0.2 0.4 0.6

skb
managment

Netdevice

TCP/IP

Memory
management

Data copy

Lock/unlock

Scheduling/
Context switching

Fraction of CPU cycles

ARM

x86

Figure 3: CPU breakdown of two different
CPU architectures.

100B 500B 1KB 4KB 16KB
0

50

100

150

Message size

O
ve

rh
ea

d
in

cr
ea

se
ra

te
(%

)

LatencyCPU usage

Figure 4: Overhead increase when
adding TLS encryption.

1 (QoS 0) 2 (QoS 1) 3 (QoS 2) 4 (QoS 2)
0

10

20

30

0

25

50

75

100

IoT device ID (QoS level)

A
ve

ra
ge

la
te

nc
y

(m
s) S

uccess
rate

(%
)

Success rateAverage latency

Figure 5: Message latency and success
rate of different QoS levels.

multiple IoT devices and the cloud. Our experimental environment
closely mimicked real-world IoT scenarios, incorporating cloud
services like Azure [29] and AWS [2]. Referencing common IoT
use cases, such as smart farm sensors [6], heartbeat sensors [37],
and drone cameras [47], we simulate that each IoT device trans-
mitted 100B–1KB of sensing data to the IoT cloud gateway every
100 ms. Subsequently, the IoT cloud gateway employed multiple
agents to publish MQTT messages to the cloud side (e.g., a cloud
storage) via an MQTT broker. To ensure the reliability of message
delivery, we configure QoS 1 of MQTT. We also employ TLS v1.3,
the latest secure layer protocol. We use a Raspberry Pi 4 as our IoT
cloud gateway, which is a widely-used edge device [15, 33, 42]. It
is equipped with an ARM Cortex-A72 64-bit quad core@1.5GHz
CPU, a 8GB of RAM, and a 1 Gbps Ethernet chip. We also simulate
a cloud-side broker using Mosquitto [13] on the server machine,
which is equipped with an Intel i7-3770K octa-core@3.5GHz CPU
with 64GB memory and a 256GB SSD.

3.1 Latency variation
In delivering and receiving feedback based on collected sensor data,
message delivery latency is a crucial factor [18, 36, 45]. For instance,
for SLAM, drones should update terrain information to the cloud
as quickly as possible, such as in a few seconds [1, 47]. In addition,
for healthcare, an electrocardiogram (ECG) sensor should report
patients’ heart condition without a long delay [10]. Typically, ECG
data should be delivered within 1 second without any packet loss
[37]. The longer latency can make the data into meaningless and
useless information, as the long delivery latency prevents it from
being the most current data. To report the latency variation of
IoT-cloud ecosystem, we measure the IoT cloud gateway’s latency,
which is the time taken for a message to travel from an IoT device
to the cloud.

Figure 1 displays the 99th percentile tail latency of message
delivery for an IoT cloud gateway, demonstrating the scalability
of its performance. We instruct each device to transmit a total of
3K messages. Each circle symbol on the line represents the latency
of a specific number of IoT devices (on the x-axis). As the number
of IoT devices increases from 1 to 256, the latency increases by up
to 1255× and reaches 10.5 s. Nevertheless, given the expanding
IoT ecosystem, an IoT cloud gateway must support a large scale of
IoT devices [22, 36, 47]. In the following subsection, we investigate
several root causes from various perspectives.

3.2 CPU bottleneck
We focus on the most common scenario, where the IoT cloud gate-
way is a resource-constrained device such as a Raspberry Pi [33]
or Jetson Nano [31], typically equipped with a single quad-core
ARM-based processor. As each IoT device sends 3K record data (e.g.,
sensor data, telemetry data) within 30 s, we measure the total CPU
usage of the IoT cloud gateway across all cores using sysstat [16],
which displays both kernel and user application usages. Figure 2 de-
picts the total CPU usage of the IoT cloud gateway when all agents
concurrently transmit (publish) messages to the message broker
in the cloud; the stacked bars in the graph indicate the application
and kernel usage separately. Specifically, the CPU usage reaches
saturation (400%) when the number of IoT devices is 64, leading to
significant latency, as illustrated in Figure 1.

For user application CPU usage, the agents perform various
functions, such as storing received data, filtering data, and creating,
encrypting, and transmitting messages to the cloud. Since we exe-
cute as many agents as the number of IoT devices, the CPU usage of
user applications increases linearly. Moreover, the kernel schedules
CPU time for running processes, manages critical sections, and
processes packets at low-level networking stacks, such as TCP, IP,
and L2 layers. Although the kernel’s CPU usage is smaller than
that of applications, it increases rapidly, especially compared with
the small number of IoT devices, which occupy CPU usage that
applications must utilize. Our goal is to minimize CPU overhead,
enabling us to process as many agents as possible to mitigate high
latency on the IoT cloud gateway.

3.3 CPU architecture mismatch
To investigate the kernel-level CPU overhead, we utilize perf [17]
to measure the CPU cycles per function in the kernel source code
(Linux 5.15.0) and classify them into the top seven crucial roles of
networking (transmitting and receiving messages) [5]. Additionally,
we perform the same measurement on an x86-based machine with
similar specifications and kernel version as the IoT cloud gateway
device but with a distinct CPU architecture. In comparing the x86
results, we analyze any architectural mismatch points for IoT cloud
gateway regarding CPU usage.

Figure 3 illustrates the breakdown of kernel CPU usage, in which
64 IoT devices are connected to an IoT cloud gateway, transmit-
ting messages from IoT devices to the cloud. The x-axis presents
the fraction of CPU cycles, while the y-axis displays the seven
key roles. Among these roles, scheduling consumes a significant

APNET 2023, June 29–30, 2023, Hong Kong, China Y. Yoo et al.

amount of CPU usage for both ARM and x86. As multiple agents
operate simultaneously, CPU time scheduling and context switch-
ing occur frequently, resulting in high CPU usage. However, ARM
uses 55.65% more CPU cycles for scheduling compared to the two
architectures than x86. Moreover, with ARM, lock and unlock con-
stitute the second-largest CPU overhead. Conversely, x86 consumes
64.35% fewer CPU cycles than ARM. The remaining roles exhibit
similar differences between the two architectures with an average
difference of 1.2%, which is negligible.

3.4 TLS encryption overhead
TLS encryption is vital for secure data transfer to and from the
cloud, but it involves additional load for message processing [30].
For instance, as the TLS layer encrypts data using an authenti-
cated key and encryption algorithm (e.g., cipher suite) per record
data, approximately 100 bytes of overhead are associated with each
message. In the IoT environment, the overhead of increasing data
size due to encryption is not trivial due to resource usage and net-
work performance. We measure the overhead increase with TLS
encryption compared with non-TLS encryption as the message size
increases (from 100B to 16KB). We assume the same total record
size for every measurement. For example, the total record size is
1.6GB, so if the message size is 100B, 16K messages are transmitted.
Likewise, if the size is 16KB, 100 messages are transmitted.

Regarding CPU usage (white bar in Figure 4), the smaller the mes-
sage size, the greater the encryption overhead. When the message
size is 100B, CPU usage increases by 72.8% compared to non-TLS
encryption. However, when the message size is 16KB, it increases
only by 29.2%. Therefore, considering only the encryption overhead,
a maximum TLS message size of 16KB is appropriate for the IoT
cloud gateway. However, from a latency perspective (gray bar in
Figure 4), latency increases significantly when the message size
is 16KB. This is because, with large message sizes, fragmentation
frequently occurs based onMTU size in TCP. Furthermore, fragmen-
tation optimization methods are generally challenging to apply to
resource-constrained machines [26], emphasizing the criticality of
determining the message size for the IoT cloud gateway. However,
it is not true that the smaller the message size, the smaller the in-
crease in latency. In fact, a message size as small as 100B could lead
to a significant latency increase of 133.4% due to a larger volume
of messages being processed. Therefore, selecting an appropriate
message size is crucial. Based on our measurement, a message size
of 1KB yields the most reasonable overhead increase.

3.5 Lack of latency guarantees for high-priority
messages

Existing message protocols are not suitable for IoT cloud gateway to
achieve priority-orientedmessage delivery. For example, MQTT can
performmessage prioritization through QoS levels, which prioritize
reliability rather than latency. Higher QoS levels (1, 2) provide
greater reliability but also result in higher network overhead and
longer delivery times. Meanwhile, a lower QoS level (0) allows
for faster processing but is less reliable and does not guarantee
successful transmission. In other words, QoS levels do not provide
any guarantee of real-time delivery, and higher QoS levels can result
in greater network overhead and longer delivery times.

Re
ce

pt
io

n
m

an
ag

er

Message client APP

…

U
SB

 B
U

S

Priority
Table

Message
manager

Channel manager (channels) N
IC

…

SegaNet agent

Pr
io

rit
y

Q
ue

ui
ng

 D
isc

…

IoT devices SegaNet Cloud

❶

❷

❻ ❼

❸

❺

❹
Device
Conf

Figure 6: Overview of SegaNet.

Figure 5 presents the average message delivery latency and suc-
cess delivered message rate of each IoT device according to different
QoS levels of MQTT. We instruct that each agent publishes 10K
messages within 100 seconds. We then measure the average latency
and the rate of messages successfully delivered to the subscriber.
The average latency of messages from IoT devices set to QoS 0 is
the lowest, but only 27.9% of messages are successfully transmitted.
This is because QoS 0 involves a simple, one-way send operation
with no acknowledgment or retransmission. As such, the sender
does not wait for an acknowledgment and thus can send the next
message immediately. This speeds up communication but at the
risk of potentially losing messages. While QoS 0 does not guarantee
reliability, the latency of QoS 0 is still only 8.8% faster than that
of QoS 1. This result demonstrates that not only does the QoS pol-
icy of the existing message protocol fail to drastically improve the
message delivery latency, but also the reliability is seriously poor.

4 DESIGN
We propose SegaNet, a performant and priority-oriented IoT cloud
gateway carefully designed to overcome the performance chal-
lenges faced by current IoT cloud gateways (which we discussed
in §2.3 and §3). Figure 6 depicts the overall IoT-cloud environment,
which includes a prototype of SegaNet. We first provide a workflow
of SegaNet, with a detailed explanation later.

To start, IoT devices seeking to connect to the cloud initiate de-
vice registration by communicating with the reception manager of
SegaNet (1 in Figure 6). The reception module determines which
core will run an agent, SegaNet agent mapping to the IoT device.
The channel manager of the agent establishes two channels (con-
nections) with the IoT device and the cloud, respectively (2). Users
can configure the settings for connection to the cloud through the
device configuration file. Then, the message manager starts to re-
ceive record data from IoT device through a channel and publishes
messages to be sent to the cloud according to the device config-
uration file (3). Additionally, the message manager inspects the
priority table to identify the message’s priority level, then uses this
information in the processes of publishing and transmitting the
message (4). Once the message has been published, it is transmit-
ted to the cloud over the channel (5). The message packet is then
classified into packet queues using the priority queuing discipline
before being delivered to the NIC (6). Finally, the NIC employs
priority-based scheduling to send messages from the packet queues
to the cloud (7). The workflow for transmitting messages from the
cloud to the IoT device follows the same process in reverse order.

SegaNet APNET 2023, June 29–30, 2023, Hong Kong, China

4.1 Multiple agents management
The reception manager is responsible for managing and executing
agents, which handle messages from IoT devices connected to the
cloud. Given the necessity to support connectivity for a variety of
IoT devices, the IoT cloud gateway must manage numerous agents,
which invoke a lot of system calls for networking. As discussed in
§3.3, scheduling and lock overhead can consume high CPU cycles
for networking where many applications are running simultane-
ously. While CFS scheduling guarantees dynamically fair CPU time
scheduling, it is not efficient that consumes excessive CPU cycles
for resource-constrained and ARM-based machines.

Thus, reception manager ensures that each SegaNet agent runs
only on designated cores (core affinity) to minimize CPU scheduling
overhead. This can be beneficial because it reduces the number
of context switches between cores, which in turn mitigates the
overhead of acquiring and releasing locks. Moreover, pinning the
core on modern Linux kernel systems, where the application and
kernel tend to run on the same core [5], increases the cache hit rate.
The reception manager determines the core number by hash key,
which is calculated by hash function with an input set consisting
of the device ID and MAC address of the IoT device. We use the
Jenkins hash function [21] rather than a round-robin table, which
aims to achieve both efficiency and even distribution of hash values
for a given input set with less overhead.

4.2 Efficient TLS encryption
The message manager is responsible for publishing messages (e.g.,
MQTT)—formatting messages with record data from an IoT device
(e.g., set topic name, QoS level, and TLS options). Here, we consider
TLS overhead when publishing messages. As discussed in §3.4, the
TLS encryption overhead is heavily reliant on the message size.
Therefore, we design the message manager to publish a message
by message batching.

Since overhead is not a significant issue when processing a small
number of devices, message batching is unnecessary, as shown
in Figures 1 and 2. As a result, the message manager checks the
number of actively connected IoT devices to SegaNet, which can be
checked by the reception manager. Consequently, message batch-
ing only occurs if the number of connected IoT devices exceeds
50, a value that can be modified by the administrator and included
in the device configuration file. If the answer is yes, the message
manager aggregates record data while checking two conditions.
First, the message size must be limited to 1KB, as determined by
our measurements in Figure 4. Second, the maximum waiting time
for aggregating record data cannot exceed 1 second, which is the
maximum waiting time limit for batching. If either of these condi-
tions is met, the message manager publishes the aggregated record
data as a message.

4.3 Priority-oriented message delivery
In the previous sections (§4.1 and §4.2), we discussed the behavior
of SegaNet in normal situations. In this section, we will describe
how SegaNet handles messages based on the priority of each IoT
device. Users can specify a priority value in the priority table of the
SegaNet agent, with options of either 1 (high-priority) or 2 (normal-
priority). The message manager will publish messages based on

their priority value. For message manager, if the priority value is 1,
message batching (§4.2) is not working, and the message manager
will publish messages directly without aggregating record data.

Furthermore, the channel managers of high-priority IoT devices
install queuing discipline filter rules to ensure that packets are
processed with high priority when they are sent out through the
channel. These filter rules are identified by the unique source port
number of each agent. The queuing disciplines in the network-
ing stack then classify and enqueue packets into multiple packet
queues according to the source port number. Most modern NICs
support multiple independent transmission packet queues [9], even
on resource-constrained machines [31, 33]. Therefore, we have de-
signed a priority scheduling algorithm for a NIC that makes packets
enqueued into different packet queues and dequeued according to
the priority. Thus, NIC will send out packets in the high-priority
queue first, followed by packets from other queues.

5 PRELIMINARY RESULT
5.1 Prototype implementation
We have implemented a prototype of the SegaNet with reception
manager and SegaNet agent. Our prototype is based on MQTT mes-
sage protocol. We implement reception manager with Python codes
that determines the core affinity that will execute SegaNet agents
and pin them to each core using taskset in Linux. To implement
channel manager and message manager, which are parts of the
SegaNet agent, we use Paho client Java library [14]. We leverage tc
to allow the channel manager to flexibly assign priority to packets
and a NIC to perform priority-based queuing scheduling.

5.2 Prototype evaluation
In this section, we present an evaluation of our prototype’s ability to
improve latency and CPU usage compared to the existing IoT cloud
gateway (native). We also evaluate whether our priority-oriented
message delivery design can ensure that high-priority messages
are delivered faster. Our experimental environment is the same as
described in §3, and we conduct each measurement three times.

Message latency improvement. Figure 7 shows the 99th per-
centile tail latency of messages for SegaNet and native. As the
number of connected IoT devices increases, latency increases up to
12.7 s for native and up to 0.76 s for SegaNet on average. Compared
to the IoT device number is 1, the latency of native and SegaNet
increases by 2067× and by 78×, respectively. In particular, when
the number of IoT devices is 64 compared to 16 in the SegaNet, it
increases rapidly (26.5× increase). This is because of the waiting
time to aggregate record data for message batching (400 ms on
average). However, it is reasonable that SegaNet improves latency
by up to 16.7× compared to native, and latency grows up to 762.5
ms, which is within 1s even the number of IoT devices is 256.

CPU usage improvement. Figure 8 shows the total CPU usage
of both gateways. In all cases, SegaNet shows lower CPU usage
than native. When the number of IoT devices ranges from 1 to 16,
SegaNet consumes 26.7% less CPU usage than native on average,
and for 64 and 256 IoT devices, it consumes 77.6% and 64.6% less,
respectively. In particular, for native, CPU becomes saturated from
the number of IoT devices is 64, whereas, for SegaNet, CPU is
not saturated even when the number of IoT devices reaches 256.

APNET 2023, June 29–30, 2023, Hong Kong, China Y. Yoo et al.

1 4 16 64 256
0

50

100
200

700

1200

8000

13000

Number of IoT devices

99
%

ta
il

la
te

nc
y

(
m

s) Native

SegaNet

Figure 7: Message delivery Latency
comparison.

1 4 16 64 256
0

100

200

300

400

Number of IoT devices

T
ot

al
C

P
U

U
sa

ge
(%

) Native

SegaNet

Figure 8: Total CPU usage compari-
son.

1 (1) 2 (2) 3 (2) 4 (2)
0

10

20

30

40

50

IoT device ID (priority)

La
te

nc
y

(m
s)

99% tail latency
Average latency

Figure 9: Latency comparison ac-
cording to priority.

It consumes up to 141.6% in total, which means there is no CPU
bottleneck to handle a number of IoT devices simultaneously.

Priority-oriented message delivery. Figure 9 shows message
delivery latency of four IoT devices that have different priorities.
We set a priority of device 1 as 1 and others as 2. Also, all of IoT
devices set QoS 1 for delivery reliability. We instruct each IoT device
to send 10K record data within 100 s and measure the average and
99th percentile tail latency of each message. Device 1, which has
a higher priority, has up to 35.8% and 43.17% better (lower) for
average latency and tail latency than other devices, respectively.
Moreover, not only does device 1 achieve fast message transmission,
but all messages were delivered successfully because it keeps the
reliability of the message protocol (QoS 1 of MQTT).

6 DISCUSSION AND FUTUREWORK
Containerized environment. Modern public cloud platforms
gather IoT telemetry and harness machine learning to provide ad-
vanced services for IoT [28]. These applications are deployed and
executed via container images and container runtimes (e.g., Docker),
ensuring simplified deployment [8]. Moreover, IoT agents can op-
erate as container runtimes on an IoT cloud gateway. Neverthe-
less, such containerized environments necessitate supplementary
networking techniques, such as overlay or NAT, for external com-
munication, thereby generating significant overhead [41]. In our
future work, we propose investigating the integration of existing
efficient solutions, such as Slim [48] and k3s [23], with the goal of
enhancing SegaNet’s container networking performance.
Priority maintenance challenge in cloud. It is vital to devise
methods that consistently maintain the order of message impor-
tance in the cloud, even though messages are dispatched according
to their priority from the IoT cloud gateway. The principal challenge
is that messages from various devices converge in the cloud, po-
tentially disrupting the initial priority order. As the cloud connects
to a multitude of IoT devices, maintaining priority order becomes
increasingly complex. Crucial factors, such as the geographical
locations (e.g., round-trip time) and the individual message prior-
ity policy of IoT devices, necessitate further consideration. Hence,
we intend to collaborate with the cloud side in developing algo-
rithms or policies that effectively account for these aspects, thereby
ensuring accurate priority maintenance in the cloud.
Communication bottlenecks from IoT devices. As IoT devices
and the IoT cloud gateway communicate, several interference is-
sues can occur among the devices. A key problem emerges when

different radios use the same frequency, as in the case of both Zig-
bee and Bluetooth operating on the 2.4 GHz ISM band. Despite
using frequency hopping and coexistence mechanisms, interfer-
ence still occurs when radios share the same frequency band [34].
Additionally, a bottleneck might occur in the USB bus if the IoT
cloud gateway processes multiple data streams simultaneously from
additional USB module-type sensors [25]. These interferences can
then result in delayed message delivery and disrupt the priority or-
der of messages. We therefore intend to appoint the order of record
data transmission of IoT devices while considering interference.
Evaluation in large-scale IoT environment. SegaNet assures
robust internet connectivity for a multitude of IoT devices, while
ensuring low message latency and optimal CPU utilization. Given
its capabilities, it is essential to contemplate the potential impact of
SegaNet in real-world and large-scale settings for future studies. To
this end, we aim to persist with the evaluation of SegaNet, leverag-
ing the diverse nodes and networks provided by OpenNetLab[12].

7 CONCLUSION
We have meticulously designed and implemented a prototype of
SegaNet, aimed at facilitating the scalability of numerous IoT devices
connected to the cloud. The promising results from our prototype
evaluation demonstrate the potential for IoT cloud gateways to
seamlessly accommodate a vast array of devices. Moreover, we
have showcased the gateway’s ability to prioritize message delivery
while maintaining compatibility with existing message protocols.

SegaNet has the potential to serve not only as an IoT cloud
gateway but also as an efficient framework to bridge the gap be-
tween IoT and cloud systems. By providing a vision for efficiently
connecting IoT and cloud technologies, we believe that SegaNet
can contribute significantly to the growth of a thriving IoT-cloud
ecosystem.

ACKNOWLEDGMENTS
This work was supported by OpenNetLab project and Institute of
Information & communications Technology Planning & Evaluation
funded by the Korea government (Ministry of Science and ICT)
(2022-00155958, Collaborative Research Projects with Microsoft
Research Asia). This work was also partly supported by Basic Sci-
ence Research Program through the National Research Founda-
tion of Korea (NRF) funded by the Ministry of Education (NRF-
2021R1A6A1A13044830), and by the NRF grant funded by the Korea
government (MSIT) (NRF-2023R1A2C3004145).

SegaNet APNET 2023, June 29–30, 2023, Hong Kong, China

REFERENCES
[1] Fawad Ahmad, Hang Qiu, Ray Eells, Fan Bai, and Ramesh Govindan. 2020.

CarMap: Fast 3D Feature Map Updates for Automobiles.. In NSDI. 1063–1081.
[2] AWS Amazon. 2022. AWS IoT Core Features. (Feb 2022). https://aws.amazon.

com/iot-core/features/ [Accessed: Mar. 15. 2023.].
[3] Rafael Vidal Aroca and Luiz Marcos Garcia Gonçalves. 2012. Towards green data

centers: A comparison of x86 and ARM architectures power efficiency. J. Parallel
and Distrib. Comput. 72, 12 (2012), 1770–1780.

[4] Gunjan Beniwal and Anita Singhrova. 2022. A systematic literature review on
IoT gateways. Journal of King Saud University-Computer and Information Sciences
34, 10 (2022), 9541–9563.

[5] Qizhe Cai, ShubhamChaudhary,Midhul Vuppalapati, JaehyunHwang, and Rachit
Agarwal. 2021. Understanding host network stack overheads. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference. 65–77.

[6] Tusher Chakraborty, Heping Shi, Zerina Kapetanovic, Bodhi Priyantha, Deepak
Vasisht, Binh Vu, Parag Pandit, Prasad Pillai, Yaswant Chabria, Andrew Nelson,
Michael Daum, and Ranveer Chandra. 2022. Whisper: IoT in the TV White
Space Spectrum. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). USENIX Association, 401–418.

[7] Djabir Abdeldjalil Chekired, Lyes Khoukhi, and Hussein T Mouftah. 2018. In-
dustrial IoT data scheduling based on hierarchical fog computing: A key for
enabling smart factory. IEEE Transactions on Industrial Informatics 14, 10 (2018),
4590–4602.

[8] Jun Lin Chen, Daniyal Liaqat, Moshe Gabel, and Eyal de Lara. 2022. Starlight:
Fast container provisioning on the edge and over the {WAN}. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22). 35–50.

[9] Pavel Chuprikov, Sergey Nikolenko, and Kirill Kogan. 2015. Priority queue-
ing with multiple packet characteristics. In 2015 IEEE Conference on Computer
Communications (INFOCOM). IEEE, 1418–1426.

[10] Berken Utku Demirel, Islam Abdelsalam Bayoumy, and Mohammad Abdullah
Al Faruque. 2021. Energy-efficient real-time heart monitoring on edge–fog–
cloud internet of medical things. IEEE Internet of Things Journal 9, 14 (2021),
12472–12481.

[11] Wei Dong, Jiamei Lv, Gonglong Chen, Yihui Wang, Huikang Li, Yi Gao, and
Dinesh Bharadia. 2022. TinyNet: A lightweight, modular, and unified network ar-
chitecture for the internet of things. In Proceedings of the 20th Annual International
Conference on Mobile Systems, Applications and Services. 248–260.

[12] Jeongyoon Eo, Zhixiong Niu, Wenxue Cheng, Francis Y Yan, Rui Gao, Jorina
Kardhashi, Scott Inglis, Michael Revow, Byung-Gon Chun, Peng Cheng, et al.
2022. OpenNetLab: Open platform for RL-based congestion control for real-time
communications. (2022).

[13] Eclipse foundation. 2023. Eclipse Mosquitto, An open source MQTT broker.
(2023). https://mosquitto.org/ [Accessed: Mar. 1. 2023.].

[14] Eclipse foundation. 2023. Eclipse Paho Java Client. (2023). https://www.eclipse.
org/paho/index.php?page=clients/java/index.php [Accessed: Mar. 1. 2023.].

[15] Tyler Gizinski and Xiang Cao. 2022. Design, Implementation and Performance
of an Edge Computing Prototype Using Raspberry Pis. In 2022 IEEE 12th Annual
Computing and Communication Workshop and Conference (CCWC). 0592–0601.

[16] Sebastien Godard. 2023. Performance monitoring tools for Linux. (2023). https:
//github.com/sysstat/sysstat [Accessed: Mar. 1. 2023.].

[17] Brendan Gregg. 2020. Linux perf Examples. (July 2020). https://www.
brendangregg.com/perf.html [Accessed: Mar. 15. 2023.].

[18] Jin Huang, Colin Samplawski, Deepak Ganesan, Benjamin Marlin, and Heesung
Kwon. 2020. Clio: Enabling automatic compilation of deep learning pipelines
across iot and cloud. In Proceedings of the 26th Annual International Conference
on Mobile Computing and Networking. 1–12.

[19] IDC. 2023. IDC’s Worldwide Global DataSphere IoT Device and Data Forecast,
2019–2023. (2023). https://www.idc.com/ [Accessed: Mar. 15. 2023.].

[20] Ayush Jalan. 2022. x86 vs. ARM: Which Architecture Should Your Next PC Use?
(2022). https://www.makeuseof.com/x86-vs-arm-which-architecture-should-pc-
use/ [Accessed: Mar. 1. 2023.].

[21] Bob Jenkins. 2013. A hash function for hash Table lookup. (Nov 2013). http:
//www.burtleburtle.net/bob/hash/doobs.html [Accessed: Mar. 15. 2023.].

[22] Jinhwan Jung, Jihoon Ryoo, Yung Yi, and Song Min Kim. 2020. Gateway over the
air: Towards pervasive internet connectivity for commodity iot. In Proceedings of
the 18th International Conference on Mobile Systems, Applications, and Services.
54–66.

[23] k3s. 2023. K3s - Lightweight Kubernetes. (2023). https://docs.k3s.io/ [Accessed:
May. 1. 2023.].

[24] Hyung-Sin Kim, Sam Kumar, and David E Culler. 2019. Thread/OpenThread:
A compromise in low-power wireless multihop network architecture for the
Internet of Things. IEEE Communications Magazine 57, 7 (2019), 55–61.

[25] Carel P Kruger and Gerhard P Hancke. 2014. Benchmarking Internet of things de-
vices. In 2014 12th IEEE International Conference on Industrial Informatics (INDIN).
IEEE, 611–616.

[26] Sam Kumar, Michael P Andersen, Hyung-Sin Kim, and David E Culler. 2020.
Performant TCP for Low-Power Wireless Networks.. In NSDI. 911–932.

[27] Xiaofeng Lin, Yu Chen, Xiaodong Li, Junjie Mao, Jiaquan He, Wei Xu, and
Yuanchun Shi. 2016. Scalable kernel TCP design and implementation for short-
lived connections. ACM SIGARCH Computer Architecture News 44, 2 (2016),
339–352.

[28] Microsoft. 2023. Understand Azure IoT Edge modules. (2023).
https://learn.microsoft.com/en-us/azure/iot-edge/iot-edge-modules?source=
recommendations&view=iotedge-1.4 [Accessed: May. 1. 2023.].

[29] Azure Microsoft. 2023. How an IoT Edge device can be used as a gateway. (Feb
2023). https://learn.microsoft.com/en-us/azure/iot-edge/iot-edge-as-gateway
[Accessed: Mar. 15. 2023.].

[30] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy Blackburn,
Diego R López, Konstantina Papagiannaki, Pablo Rodriguez Rodriguez, and Peter
Steenkiste. 2015. Multi-context TLS (mcTLS) enabling secure in-network func-
tionality in TLS. ACM SIGCOMM Computer Communication Review 45, 4 (2015),
199–212.

[31] NVIDIA. 2023. Jetson Nano. (2023). https://developer.nvidia.com/embedded/
jetson-nano [Accessed: Mar. 15. 2023.].

[32] Jongseok Park, Kyungmin Bin, and Kyunghan Lee. 2022. mGEMM: low-latency
convolution with minimal memory overhead optimized for mobile devices. In
Proceedings of the 20th Annual International Conference on Mobile Systems, Appli-
cations and Services. 222–234.

[33] Raspberry pi. 2023. Raspberry Pi for industry. (2023). https://www.raspberrypi.
com/for-industry [Accessed: Mar. 15. 2023.].

[34] Fengzhong Qu, Fei-Yue Wang, and Liuqing Yang. 2010. Intelligent transportation
spaces: vehicles, traffic, communications, and beyond. IEEE Communications
Magazine 48, 11 (2010), 136–142.

[35] Florentin Rochet, Emery Assogba, and Olivier Bonaventure. 2020. TCPLS: Closely
Integrating TCP and TLS. In Proceedings of the 19th ACM Workshop on Hot Topics
in Networks. 45–52.

[36] Vadim Safronov, Justas Brazauskas, Matthew Danish, Rohit Verma, Ian Lewis,
and Richard Mortier. 2021. Do we want the New Old Internet? Towards Seamless
and Protocol-Independent IoT Application Interoperability. In Proceedings of the
Twentieth ACM Workshop on Hot Topics in Networks. 185–191.

[37] Saurabh Shukla, Mohd Fadzil Hassan, Muhammad Khalid Khan, Low Tang Jung,
and Azlan Awang. 2019. An analytical model to minimize the latency in health-
care internet-of-things in fog computing environment. PloS one 14, 11 (2019),
e0224934.

[38] Michael Spörk, Carlo Alberto Boano, Marco Zimmerling, and Kay Römer. 2017.
Bleach: Exploiting the full potential of ipv6 over ble in constrained embedded iot
devices. In Proceedings of the 15th ACM Conference on Embedded Network Sensor
Systems. 1–14.

[39] Statista. 2023. Number of Internet of Things (IoT) connected devices worldwide
from 2019 to 2021, with forecasts from 2022 to 2030. (2023). https://www.statista.
com/statistics/1183457/iot-connected-devices-worldwide/ [Accessed: Mar. 15.
2023.].

[40] Biljana L Risteska Stojkoska and Kire V Trivodaliev. 2017. A review of Internet of
Things for smart home: Challenges and solutions. Journal of cleaner production
140 (2017), 1454–1464.

[41] Kun Suo, Yong Zhao, Wei Chen, and Jia Rao. 2018. An analysis and empirical
study of container networks. In IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 189–197.

[42] Blesson Varghese, Nan Wang, David Bermbach, Cheol-Ho Hong, Eyal De Lara,
Weisong Shi, and Christopher Stewart. 2021. A survey on edge performance
benchmarking. ACM Computing Surveys (CSUR) 54, 3 (2021), 1–33.

[43] JP. Vasseur. 2014. Terms Used in Routing for Low-Power and Lossy Networks.
(2014). https://datatracker.ietf.org/doc/html/rfc7102 [Accessed: Mar. 1. 2023.].

[44] Morgan Vigil-Hayes, Md Nazmul Hossain, Alexander K Elliott, Elizabeth M
Belding, and Ellen Zegura. 2022. LoRaX: Repurposing LoRa as a Low Data
Rate Messaging System to Extend Internet Boundaries. In ACM SIGCAS/SIGCHI
Conference on Computing and Sustainable Societies (COMPASS). 195–213.

[45] Chen Wang, Ruonan Zhang, Haotong Cao, Junhao Song, and Wei Zhang. 2022.
Joint optimization for latency minimization in UAV-assisted MEC networks. In
Proceedings of the 5th International ACM Mobicom Workshop on Drone Assisted
Wireless Communications for 5G and Beyond. 19–24.

[46] Maarten Wijnants, Robin Marx, Peter Quax, and Wim Lamotte. 2018. Http/2
prioritization and its impact on web performance. In Proceedings of the 2018 World
Wide Web Conference. 1755–1764.

[47] Jingao Xu, Hao Cao, Zheng Yang, Longfei Shangguan, Jialin Zhang, Xiaowu He,
and Yunhao Liu. 2022. SwarmMap: Scaling up real-time collaborative visual
SLAM at the edge. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). 977–993.

[48] Danyang Zhuo, Kaiyuan Zhang, Yibo Zhu, Hongqiang Harry Liu, Matthew Rock-
ett, Arvind Krishnamurthy, and Thomas Anderson. 2019. Slim:{OS} kernel
support for a low-overhead container overlay network. In 16th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI} 19). 331–344.

https://aws.amazon.com/iot-core/features/
https://aws.amazon.com/iot-core/features/
https://mosquitto.org/
https://www.eclipse.org/paho/index.php?page=clients/java/index.php
https://www.eclipse.org/paho/index.php?page=clients/java/index.php
https://github.com/sysstat/sysstat
https://github.com/sysstat/sysstat
https://www.brendangregg.com/perf.html
https://www.brendangregg.com/perf.html
https://www.idc.com/
https://www.makeuseof.com/x86-vs-arm-which-architecture-should-pc-use/
https://www.makeuseof.com/x86-vs-arm-which-architecture-should-pc-use/
http://www.burtleburtle.net/bob/hash/doobs.html
http://www.burtleburtle.net/bob/hash/doobs.html
https://docs.k3s.io/
https://learn.microsoft.com/en-us/azure/iot-edge/iot-edge-modules?source=recommendations&view=iotedge-1.4
https://learn.microsoft.com/en-us/azure/iot-edge/iot-edge-modules?source=recommendations&view=iotedge-1.4
https://learn.microsoft.com/en-us/azure/iot-edge/iot-edge-as-gateway
https://developer.nvidia.com/embedded/jetson-nano
https://developer.nvidia.com/embedded/jetson-nano
https://www.raspberrypi.com/for-industry
https://www.raspberrypi.com/for-industry
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://datatracker.ietf.org/doc/html/rfc7102

	Abstract
	1 Introduction
	2 Background and challenges
	2.1 Connectivity between IoT and cloud
	2.2 IoT cloud gateway
	2.3 Challenges of IoT cloud gateway

	3 Motivating experiment and analysis
	3.1 Latency variation
	3.2 CPU bottleneck
	3.3 CPU architecture mismatch
	3.4 TLS encryption overhead
	3.5 Lack of latency guarantees for high-priority messages

	4 Design
	4.1 Multiple agents management
	4.2 Efficient TLS encryption
	4.3 Priority-oriented message delivery

	5 preliminary result
	5.1 Prototype implementation
	5.2 Prototype evaluation

	6 Discussion and Future Work
	7 Conclusion
	Acknowledgments
	References

